The Bone & Joint Fund was established by the small animal surgeons at the Texas A&M University Veterinary Medical Teaching Hospital (VMTH) to advance the understanding of common orthopedic disorders and to develop cutting-edge treatment options for our patients.

The Initiative

Our clients often pose questions about why their pet developed a certain orthopedic disease, or whether cutting-edge treatments used in humans would be effective for their pet’s condition. Your support will help answer these important questions. The Bone & Joint Fund will also help orthopedic patients in need of advanced treatments whose owners have financial hardships that prevent them from providing essential care for their pet.

Our Objectives

• To advance the understanding of common orthopedic diseases

• To develop new cell-based or molecular treatments, such as adult stem cell therapy, for debilitating orthopedic conditions

• To design and perform clinical trials that will objectively determine the effectiveness of new surgical or cell-based therapies

• To honor special pets, animal enthusiasts, and animal health professionals

Your Support

Bone, joint, and other musculoskeletal disorders are a major cause of debilitation and illness in companion animals. Texas A&M’s small animal orthopedic surgeons are committed to advancing the field of veterinary orthopedics, and more importantly, treatment options for our veterinary patients. Your support will help us better understand common orthopedic diseases, fund clinical research, develop cutting-edge treatments, and carry out the clinical trials that are necessary to demonstrate the effectiveness of new treatments. Contributing to the Bone & Joint Fund at the Texas A&M College of Veterinary Medicine & Biomedical Sciences allows you to partner with us as we advance the field of small animal orthopedics locally, regionally, and globally.

Milo suffered from severe hip dysplasia. After replacement of both hips at Texas A&M, he can run, jump, and play with his family again without experiencing weakness or pain.

In this new stem cell assay, cell invasiveness is evaluated as individual canine stem cells invade a three-dimensional collagen gel.

O.J. “Bubba” Woytek, DVM ’65, Assistant Vice President of Development
Chastity Carrigan, Senior Director of Development
Guy A. Sheppard, DVM ’78, Director of Development

Development Office • Office of the Dean
College of Veterinary Medicine & Biomedical Sciences
Texas A&M University • 4461 TAMU • College Station, TX 77843-4461
Tel. 979.845.9043 • Fax 979.862.3104 • vetmed.tamu.edu/giving/

Making a Difference in Veterinary Medicine