Epidemiological Concepts

Causal Concepts

Inductive reasoning: The process of making generalized inferences about 'causation' based on repeated observations.

Deductive reasoning: The process of inferring that a general 'law of nature' exists and has application in a specific, or local, instance.

Cause: Any factor that produces a change in severity or frequency of the outcome.

Necessary cause: One without which the disease cannot occur.

Sufficient cause: Produces the disease if the factor is present.

Component-cause: One of a number of factors that, in combination, con

Target Population: The population to which it might be possible to extrapolate results from a study.

Source Population: The population from which the study subjects are drawn.

Study Sample/Group: Consists of the individuals (animals or groups of animals) that end up in the study.

Internal validity: The study results are valid for members of the source population.

External validity: The study results are valid for the source population, target population, and beyond.

Sampling

Non-probability sampling: individual's probability of selection is not determined (Judgment, Convenience, Purposive)

Probability sampling: every element has a known non-zero probability of being included in the sample

Simple random sample: Every study subject in the source population has an equal probability of being included.

Systematic random sample: A complete list of the population to be sampled is not required provided an estimate of the total number of animals is available and all the animals are sequentially available.

Stratified random sample: Prior to sampling, the population is divided into mutually exclusive strata based on factors likely to affect the outcome.

Cluster sampling: Every study subject within the cluster (collection of subjects with 1 or more common characteristics) is included in the sample and the primary sampling unit is larger than the unit of concern.

Multistage sampling: After the primary sampling unit is chosen, then a sample of secondary sampling units is selected.

Targeted (risk-based) sampling: Animals are assigned point values based on the probability of them having the disease of interest and sampling is proportional to that estimate of risk.

Sampling frame: List of all sampling units in the source population

Direct Cause

(Exposure)

Type I (α) error: Concluding that the outcomes in the groups being compared are different (association exists) when they are not.

Type II (\beta) error: Concluding that the outcomes are not different (no association) when they are

Power: Probability that you will find a statistically significant difference when it exists and is of a certain magnitude (i.e. power = $1-\beta$)

Created by Keila Perez
Created by Rena Terez
Invial@tamu.adu
KVIOI@tanu.edu
L

Sampling Equations

1) n= total sample size

desired precision:

To estimate a sample proportion with a

 $n = \frac{Z_{\alpha}^2 p q}{L^2}$

To estimate a sample mean with a desired precision: $Z_{\pi}^{2}\sigma^{2}$

 $n = \frac{Z_{\alpha}^2 \sigma^2}{L^2}$

2) (n=sample size per group) To compare 2 proportions: Where p=(p1+p2)/2 and q=1-p

 $n = \frac{\left[Z_{\alpha}\sqrt{2qp} - Z_{\beta}\sqrt{p_1q_1 + p_2q_2}\right]^2}{(p_{1-}p_2)^2}$

To compare 2 means:

If sampling from a finite population in descriptive studies, the required sample size (n') can be adjusted using FPC formula:

Questionnaires

Questionnaire: A data-collection tool that can be used in a wide variety of clinical and epidemiological research settings.

Survey: An observational study designed to collect descriptive information about an animal population (such as prevalence of disease, level of production etc.)

Types of Error:

Conclusion of stat.	True state of nature			
analysis	Effect present	Effect absent		
Effect present (reject		Type I (α)error		
null)	Correct (power)	(p-value)		
Effect absent (accept	Type II (β) er-			
null)	ror	Correct		

For adjusting the sample size (n) for clustering, the size of new n(n') depends on intra-cluster correlation (ϱ) and number of individuals sampled per cluster (m):

 $n' = n(1 + \rho(m - 1))$

4) Sampling to confirm disease absence From finite population <1000:

 $n = \left(1 - \left(\alpha\right)^{1/D}\right)\left(N - \frac{D-1}{2}\right)$

From a large (infinite) population:

 $n = \frac{\ln(\alpha)}{\ln(q)}$

5) Adjustment of sample size (n) in multivariable studies:

For k continuous covariates, new n (n') ρ ce =average correlation between exposure and confounders

Focus Groups: Normally a group of 6-12 people that provide opportunity for a structured form of consultation with members of the intended study population, the end users and/or the interviewers.

Qualitative: 'Explorative' questionnaires consisting mainly of open questions.

Measures of Disease Frequency

Study Period: Period of time over which the study is conducted.

Risk period: Time during which the individual could develop the disease of interest

Count: The number of cases of disease or number of animals affected with a condition in a given population

Proportion: Ratio in which the numerator is a subset of the denominator

Odds: Ratio in which the numerator is not a subset of the denominator.

Rate: Ratio in which the denominator is the number of animal-time units at risk

Incidence (I): The number of new events in a defined population within a specific period of time

-Incidence times: Times which incident cases occur

-Incidence count: Count of number of cases of disease observed in a population

-Incidence risk: Probability an animal will develop a disease in a defined time

-Incidence rate: Number of new cases of disease in a population per unit of animal time during a given time period For continuous and binary covariates, new n (n') (VIF= Variance Inflation Factor):

n'=n*VIF

6) General formula for the width of CI of a parameter

Parameter \pm Z*SE(parameter), where for - Estimating a mean in a single sample

- Comparisons of means from 2 samples

- If expected interaction between two dichotomous variables

Quantitative: 'Structured' questionnaires designed to capture information about study subjects and their environment

Open Question: There are no restrictions on the types of responses expected.

Closed Question: The response has to be selected from a pre-set list of answers.

Absolute rates: Number of cases of disease related to the time period of observation

Closed Population: No additions to the population for the duration of the study (nor losses)

Open Population: Animals are leaving and entering the population

Prevalence (P): Cases of disease existing at a specific point in time rather than new cases occurring over a period of time

(D=mean duration of disease)

Measures of Association

Measure of association (MA): Assesses the magnitude of the relationship between an exposure to a disease and a disease

Attributable fraction (Afe): Proportion of diseases in exposed that is due to the exposure

Approaches for hypothesis testing include:

- Estimating standard error (SE) of the parameter as a measure of precision of the point estimate (uncertainty)

- Compute test statistic and from the expected distribution of this test statistic determine p-value

- Compute confidence interval (CI) for the point estimate. CI reflect the level of uncertainty in point estimates and indicate the range of values that a parameter might have (with values closer to the center being more likely than those at the ends of the range).

Exposure			Risk ratio	$RR = \frac{a1/n1}{n}$	
	Exposed	Non-exposed	Total	113111410	a0/n0
Diseased /number of cases	a1	a0	m1	Data ratio	$a_{ID} = \frac{a_{I}/t_{I}}{t_{ID}}$
Non-diseased	b1	b0	m0	Rale ralio	$IK = \frac{1}{a0/t0}$
Total	n1	n0	n		a1/b1 $a1 + b0$
Animal time at risk	t1	t0	t	Odds ratio	$OR = \frac{a1/b1}{a0/b0} = \frac{a1 * b0}{a0 * b1}$

Interpretation of <u>Risk ratio (RR)</u>, <u>Rate ratio (IR)</u>, and <u>Odds ratio (OR)</u>: <1 exposure is protective, =1 no effect, and >1 exposure is positively associated with disease

$$RD = a1/n1 - a0/n0$$
 $ID = a1/t1 - a0/t0$

Interpretation of Risk difference (RD) and Incidence difference (IR): <0 exposure is protective, =0 no effect, and >0 exposure is positively associated with disease

$$AFe = \frac{a1/n1 - a0/n0}{a1/n1} = \frac{(RR - 1)}{RR} \cong \frac{(OR - 1)}{OR}$$

The range for AFe: Values from 0 (risks equal regardless of exposure) to 1 (no disease in non-exposedà i.e. all disease is due to exposure). Vaccine efficacy is a form of AFe.

Diagnostic Tests

Accuracy: Average is close to true value

Precision: The amount of variability among test results.

Coefficient of variation (CV): Standard Devation/Mean (for repeat runs on same sample)

Pearson correlation coefficient (PCC): Ignores the scales of the 2 sets of results

Concordance correlation coefficient (CCC): Takes into account data position from equality line.

Kappa Statistic: Measure of agreement for tests with qualitative outcomes. Ranges from 0 (poor agreement) to 1 (perfect agreement.

Agreement: How well 2 different tests agree on the same sample.

Multiple Tests Interpretation:

- Series: Result is considered positive only if both tests are positive

- Parallel: result is considered positive if either test is positive

Sensitivity (Se): proportion of diseased animals that test positive (TP): p(T+|D+)

Specificity (Sp): proportion of nondiseased animals that test negative (TN): p(T-|D-)

	Disease present	Disease absent
Test	True positive	False Positive
Positive	a	b
Test	False Negative	True Negative
Negative	c	d

Sensitivity = a/ (a+c) Specificity = d/(b+d)

True prevalence: The true state of nature.

Apparent prevalence: The result in the study due to imperfections in the diagnostic tests.

Predictive Values: The probability that the animal has or does not have the disease, given the test result.

$$-PV(+) = p(D+|T+)$$

 $-PV(-) = p(D-|T-)$

Define cutoff: Sp increases, Se decreases. See graph below.

Study Designs

Descriptive Study: Describe the nature of the disease.

- Case report: Based on individual
- Case series: Based on group
- Survey: Based on population

Explanatory Study: Objective is to identify associations between factors (exposures) and disease status. (Experimental and Observational Studies)

Experimental Study: Objective is to identify the effect of an exposure that is easy to manipulate (E.g. vaccine, drug)

Observational Study: Objective is to study effect of complex exposures in natural state. Types: Cross-sectional, Cohort, and Case-control study

Retrospective: Disease occurred when the study began.

Prospective: The cases do not develop until after the study begins and the cases are enrolled in the study over time.

Study base: Population from which the cases and controls are obtained.

<u>Bias</u>

Selection bias: Composition of the study group(s) differs from that in the source population (and target population).

Information bias: Incorrectly measured/ classified subject's exposure, outcome, extraneous factors

Misclassification: Rearrangement of study individuals into incorrect categories because of errors in classifying exposure, outcome or both

Non-differential Misclassification: If misclassification of the exposure and the outcome "disease" are independent. Will bias the measures of association toward the null.

Differential Misclassification: If the errors in exposure classification are related to the status of the outcome under study. Resulting bias in the measure of association might be in any direction

Measurement error: Errors in measuring quantitative factors can lead to biased measures of association.

Cross-sectional Study: Objective is to estimate some sort of population parameter. The outcome frequency of measure is prevalence since this study looks only a snip of time.

Cohort Study: A cohort is a group of subjects with common exposure, and the objective of a cohort study is to evaluate causal association between specific exposures and outcome. Most often prospective.

Case-control Study: Objective is to evaluate association(s) between exposure(s) and out-come. Most often retrospective and determine cause.

Controlled trial: Planned experiment carried out on subjects in their usual environment (clinical trail in a clinical setting)

•Phase I: (formulation trials): Trials in healthy animals to evaluate safety of the drug (dose, adverse reactions...)

•Phase II: Trials in a small number of animals from the target population (e.g., sick animals) to document the activity of the drug. Might involve before/after comparisons and often without controls.

•Phase III: Large-scale experimental studies to determine the efficacy of a drug in a typical clinical population, to monitor side effects and compare the drug with other available treatments. Should be based on randomized controlled trials!

•Phase IV: Post-registration trials designed to evaluate the most effective way of using a product. Also, should be carried out as randomized

Confounding: Due to effects of factors other than the exposure of interest on the observed measure of association.

Confounding control at the study design stage includes:

- Exclusion (Restricted sampling)

- Matching: Involves making distribution of the extraneous factor(s) in the groups being compared the same. Prevents confounding and may increase power of the study.

Confounding control during analysis: The Mantel-Haenszel (MH) estimator for Categorical data with dichotomous exposure. Will need: 1) to stratify data according to the combination of levels of the confounding variables; 2) examine stratum specific measures; 3) assure that stratum specific measures are equal using a homogeneity test; 4)calculate a pooled weighted (adjusted) estimate of association

$$\chi^{2}_{homo} = \sum \frac{\left[lnOR_{j} - lnOR_{MH}\right]^{2}}{Var[lnOR_{j}]}$$

Interaction: Stratum specific measures different (based on the homogeneity test) providing a more detailed description of the relationship between exposure and disease. Needs to be measured on either the additive or multiplicative scale.

No interaction on an Additive scale: (RR11 - 1) = (RR10 - 1) + (RR01 - 1)

No interaction on a Multiplicative scale: RR11 = RR10 * RR01

A1

A₀

B₁

R11

R01

B₀

R10

R00

$$R11 = Pr(D | A1B1)$$

$$R10 = Pr(D | A1B0)$$

$$R01 = Pr(D | A0B1)$$

$$R00 = Pr(D | A0B0)$$

$$RR11 = R11/R00,$$

$$RR10 = R10/R00,$$

$$R00 = R01/R00,$$

RR01 = R01/R00

Data layout for s	stratified a	nalyses		
	E+	E-	Total	
Cases	a _{1i}	a _{oi}	m _{1i}	
Non-cases	b _{1i}	b _{oi}	m _{0i}	
Total	n _{1i}	n _{oi}	n,	
j is stratum desinator	,		·	
Stratum specific OR:		Adju	isted OR:	
$OR_j = a_{1j} * b_{0j} / a_0$	j*b _{1j}	OR _M	$_{H} = \frac{\sum (a_{1j} *}{\sum (a_{0j} *}$	$\frac{b_{0j}/n_j}{b_{1j}/n_j}$
		L		