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Abstract
Immunoglobulins and T cell receptors (TCR) have obvious structural similarities as well as similar immunogenetic diver-
sification and selection mechanisms. Nevertheless, the two receptor systems and the loci that encode them are distinct in 
humans and classical murine models, and the gene segments comprising each repertoire are mutually exclusive. Addition-
ally, while both B and T cells employ recombination-activating genes (RAG) for primary diversification, immunoglobulins 
are afforded a supplementary set of activation-induced cytidine deaminase (AID)-mediated diversification tools. As the 
oldest-emerging vertebrates sharing the same adaptive B and T cell receptor systems as humans, extant cartilaginous fishes 
allow a potential view of the ancestral immune system. In this review, we discuss breakthroughs we have made in studies 
of nurse shark (Ginglymostoma cirratum) T cell receptors demonstrating substantial integration of loci and diversification 
mechanisms in primordial B and T cell repertoires. We survey these findings in this shark model where they were first 
described, while noting corroborating examples in other vertebrate groups. We also consider other examples where the 
gnathostome common ancestry of the B and T cell receptor systems have allowed dovetailing of genomic elements and 
AID-based diversification approaches for the TCR. The cartilaginous fish seem to have retained this T/B cell plasticity to a 
greater extent than more derived vertebrate groups, but representatives in all vertebrate taxa except bony fish and placental 
mammals show such plasticity.

Keywords Immunoglobulins · T cell receptors · evolution: antigen receptor loci · activation induced cytidine deaminase · 
Shark · Vertebrate adaptive immune system · Bony fish · Placental mammals

Introduction

The vertebrate adaptive immune system (AIS) activates 
both humoral and cell-mediated responses against invading 
pathogens (Murphy and Weaver 2017), protecting the host 
from a multitude of potential pathogens over a lifetime. 
Pivotal to this function is the creation of a diverse repertoire 
of lymphocyte antigen receptors created by the assembly 
of gene segments into complete genes during lymphocyte 
development (Tonegawa 1983). In all jawed vertebrates 
including sharks, primary diversification of B and T 
lymphocyte receptors occurs during recombination-activating 
genes (RAG)-mediated somatic recombination of variable (V), 
diversifying (D), and joining (J) gene segments within primary 
lymphoid tissues. However, the V, D, and J gene segments 
themselves and the mechanisms of V(D)J recombination 
are nearly the same between B and T lymphocytes and 
demonstrate a shared origin in the primordial system (Ohta 
et al. 2019). In fact, herein, we review that T cells are adept 
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at creating novel, diverse receptors by capitalizing on the 
accessibility of immunoglobulin heavy chain (IgH), IgH-
like, and T cell receptor (TCR) V gene segments available 
to them. Chondrichthyes, which are the oldest evolutionary 
group of vertebrates with immunoglobulin superfamily-based 
lymphocyte antigen receptors, diversify their TCR repertoires 
by forming non-canonical TCR that incorporate both T and B 
cell receptor components. These unique TCRs are constructed 
by (1) recombining distinctly IgH V (and often one or two 
IgH D) gene segments with TCR D and TCR J gene segments 
(IgH-TCR trans-rearrangements), (2) incorporating unique 
IgH-like V gene segments from within the TCRαδ locus 
(TCR-associated Ig-like V, or TAILV), or (3) combining 
two V domains—one that includes IgH-like V, D, and J gene 
segments and the other that includes TCRδ V, D, and J gene 
segments (NAR-TCR). While most of our work has been done 
with the nurse shark, G. cirratum, wherever examined, these 
mechanisms have extended to all other cartilaginous fish, 
both Elasmobranchs and Holocephalans. While vestiges and 
sometimes convergence of these more cohesive systems of 
gene segment usage can be found in other classes of jawed 
vertebrates (e.g., VHδ gene segments; TCRμ locus), nurse 
sharks (and likely all cartilaginous fish) are unusual in that 
they also commandeer activation-induced cytidine deaminase 
(AID) to catalyze somatic hypermutation (SHM) of TCR α 
(and other TCR chains) to further diversify their developing 
TCR repertoire in the thymus.

Here, we begin with a brief overview of TCR and IgH 
locus organization, RAG-mediated somatic recombination, 
and thymic development of canonical αβTCR and γδTCR. 
We then discuss the unconventional (non-canonical) TCR 
observed specifically in nurse sharks and generally in other 
gnathostome vertebrates. Finally, we examine SHM as a 
TCR repertoire diversifying mechanism in nurse sharks and 
explore the use of SHM by T cells of other vertebrates (e.g., 
camelids). We end by proposing a model to explain how 
AID-mediated SHM is used to salvage TCR to facilitate 
selection, specifically by altering the TCR α chain.

Nurse sharks (like mammals) rearrange 
canonical TCR chains during thymocyte 
development

Most functional B cell receptors (BCR or immunoglobulin, 
Ig) are composed of a heterodimer of two protein chains—a 
heavy chain (IgH) and a light chain (IgL), and each IgH 
or IgL is composed of a variable (V) region that contains 
an antigen (Ag)-binding site and a constant (C) region that 
identifies the isotype. Additionally, all jawed vertebrates 
studied have four canonical T cell receptor (TCR) chains 
(α, β, γ, δ) and typically pair α chain with β chain to form αβ 
TCR and γ chain with δ chain to form γδ TCR. Both TCR 

types occur only as transmembrane proteins on the surface 
of T cells (Chien et al. 1987). A BCR isotype is defined 
by its H chain and can occur as either a membrane-bound 
receptor or a secreted antibody (Ab) protein. In humans, 
there are five IgH isotypes in mammals: Igµ (IgM), Igδ 
(IgD), Igγ (IgG), Igα (IgA), and Igε (IgE) (Murphy and 
Weaver 2017; Flajnik 2018). Only two of the conventional 
isotypes discovered in gnathostomes are found in sharks, 
IgM and an IgD-like isotype called IgW (Ohta and Flajnik 
2006; Zhu et al. 2012).

During lymphocyte development in primary lymphoid 
tissues, both B and T cells employ recombination activating 
genes (RAG1/RAG2) to assemble complete BCR and TCR 
variable region exons from V, (D), and J gene segments. 
Rearrangement is directed by recombination signal 
sequences (RSS) adjacent to each gene segment that guide 
RAG binding to the correct location and gene segment. B 
cells develop within bone marrow (or analogous primary 
tissue like epigonal or Leydig organ in sharks), while T 
cells develop within the thymus (Gellert 2002). Variable 
regions of IgH and TCR β and δ chains contain rearranged 
V, D, and J gene segments while those of Ig light chains 
(IgL) and TCR α and γ chains contain rearranged V and 
J gene segments only (Fig.  1a). The V gene segment 
encodes three of the four framework regions (FR) and the 
first two complementarity-determining regions (CDR) of 
the assembled chain. The V(D)J junction, located between 
the V and J segments of IgL, TCRα, and TCRγ chains or 
the V, D, and J segments of IgH, TCRβ, and TCRδ chains, 
encodes the third complementarity-determining region 
(CDR). The C-terminal part of the J gene segment forms 
the fourth FR (Tonegawa 1983; Gellert 2002; Lefranc et al. 
2003; Lefranc 2014). Once assembled, each V gene encodes 
a domain that folds to form a nine β-strand support structure 
(composed of the FR) for the Ag-binding loops (CDR) at 
the membrane-distal end of the receptor (Kikutani et al. 
1986). In a complete TCR, Ag specificity is determined 
by these six CDR loops (three from TCRβ or TCRδ and 
three from TCRα or TCRγ, respectively) that form a single 
paratope (Tonegawa 1983; Jack and Du Pasquier 2019). 
These same six CDR loops (three each from IgH and IgL) 
form the Ag-binding region in Igs, though the bivalent 
receptor can bind two antigens simultaneously. While γδ T 
cells generally bind free Ag in a manner similar to B cells 
(although there are many other types of binding (Hayday 
and Vantourout 2020), conventional αβ T cells typically are 
restricted to binding peptide Ag in complex with the major 
histocompatibility complex (MHC) (Jack and Du Pasquier 
2019).

While ancestral, non-rearranging TCR and Ig genes likely 
occurred within a single locus linked to prototypic MHC 
genes within a pre-vertebrate primordial immune complex, 
one of these immune genes was invaded by the RAG 
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transposon in an early gnathostome after the genome-wide 
duplications (Zhang et al. 2019). Our recent model suggests 
that this transposon-invaded immune gene underwent 
duplication, neofunctionalization, and translocation events 
to fashion the immune loci of extant vertebrates (Ohta et al. 
2019). Presently, in the human example, genes and gene 
segments of IgH and IgL chains and TCR β and TCR γ chains 
each are encoded by separate loci, while TCR δ is embedded 
within the TCR α locus. As a result, rearrangement of TCR 
α chain deletes the embedded TCR δ locus. In most jawed 
vertebrates, loci are organized as discontiguous translocons, 
with numerous V, (D), and J gene segments preceding 

constant (C) region exons  (Vn-Dn-Jn-C) that can stretch up 
to 3 Mbp in length (Tonegawa 1983; Flajnik and Rumfelt 
2000; Gellert 2002; Schatz 2004; Criscitiello and Flajnik 
2007; Hsu 2018). For rearrangement to occur, DNA must 
undergo conformational changes that permit chromatin to 
fold and bring segments together (Jhunjhunwala et al. 2009). 
However, the loci of some organisms (e.g., shark IgH and 
bony fish IgL) are organized as multiple clusters of V, (D), 
and J gene segments and C region exons (V-D-J-C)n, creating 
a different genomic environment for sequential rearrangement 
of loci and gene segments (Dooley and Flajnik 2006; Hsu and 
Criscitiello 2006; Hsu 2009, 2018).

Fig. 1  Cartoon depictions of putative assembled T cell receptors 
(TCR, top of each panel) and transcripts (bottom of each panel) 
illustrate how vertebrates refashion canonical TCR by incorporating 
immunoglobulin heavy chain (IgH) variable (V) gene segments. a 
Canonical αβTCR (alpha chain: α, green; beta chain: β, black) and 
γδTCR (gamma chain: γ, gold; delta chain: δ, blue) are composed of 
typical V, (D), and J gene segments; b non-canonical TCR replace Vδ 
(or Vα) with IgH or IgH-like V regions (purple) to form unique TCR 
chains [L to R: IgHV gene segments associate with nurse shark TCR 
Cδ (and rarely TCR Cα); TAILV gene segments, unique to nurse 
sharks, associate with both TCR Cδ and TCR Cα; and IgH-like Vδ 
(VHδ) gene segments are found in genomes of all gnathostome ver-
tebrate groups except teleost fish and eutherian mammals (but not 
nurse sharks); c doubly rearranging NAR-TCR, also unique to car-
tilaginous fish, are composed of two variable domains that undergo 
separate RAG-mediated VDJ recombination events—a membrane-
distal IgNAR-like V domain (NARV, purple) supported by a mem-

brane-proximal TCR Vδ domain (STCRVδ, red)—associated with 
TCR Cδ; and d TCRµ, found in monotreme and marsupial mammals, 
combine IgH-like V gene segments (Vµ, light purple) with TCRδ-like 
C regions (Cµ, teal). Opossums express two isoforms of the recep-
tor: a long form (TCRµ2.0) containing two variable domains—a 
membrane-distal domain formed by RAG-recombined Vµ, Dµ, and Jµ 
gene segments and an invariant, membrane-proximal Vµj domain that 
is pre-joined in the germline (dark pink); and a short form (TCRµ1.0) 
composed of a single invariant Vµj domain. Platypus express a single 
TCRµ isoform containing two variable domains that each undergoes 
a separate recombination event. Transcripts demonstrate the variable 
use of IgH and TCR D gene segments by non-canonical receptors [V: 
variable, D: diversifying, and J: joining gene segments; C: constant 
region; TAILV: TCR-associated Ig-like V; NAR: nurse shark (or new) 
antigen receptor; RAG: recombination activating genes]. All Ig and 
Ig-like V, D, and J gene segments are colored in shades of pink/pur-
ple. Figure created with BioRender.com
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Research in mouse and human models demonstrates 
that both B cells and αβ T cells rearrange and assemble 
Ag-binding receptors in similar ways during their 
development (though developing T cells in the subcapsular 
region of the thymus also rearrange γ and δ chains 
simultaneously with TCR β chain). Generally, IgH and 
TCRβ chain loci first combine D and J gene segments and 
then join V segments to the recombined DJ. The successful 
creation of a functional IgH or TCRβ chain halts RAG 
expression and gene rearrangement, and the cell undergoes 
a clonal expansion. Cells then express RAG again during 
rearrangement of V to J segments in IgL and TCRα (Bassing 
et al. 2002; Murphy and Weaver 2017).

Rearrangement of IgH, IgL, and TCR γ, δ, and β chains is 
regulated, in part, by allelic exclusion, which (by definition) 
permits only one allelic copy of a locus to be expressed at the 
surface of a cell, ensuring that each cell recognizes only a single 
ligand [reviewed in Brady et al. (2010)]. Locus rearrangement 
and expression of the first allele thus inhibit rearrangement of 
the second (Gascoigne and Alam 1999; Brady et al. 2010). 
The exception is TCRα and IgLκ, which can rearrange the 
loci of both alleles simultaneously. Developing B cells that 
produce autoreactive receptors, undergo unsuccessful IgL 
rearrangements, or produce an IgL that cannot associate with 
the IgH chain can undergo receptor editing, rearranging both 
alleles of the IgL chain locus multiple times until a productive 
arrangement is made or the cell undergoes apoptosis (McGargill 
et al. 2000; Schatz 2004; Kuklina 2006). Developing T cells 
that fail to produce a functional TCRα chain, or a TCRα chain 
that cannot associate with the TCRβ chain, or produce a TCRα 
chain that cannot be positively selected when associated with 
the TCRβ chain also can undergo receptor editing, rearranging 
at both TCR α alleles many times until a useful arrangement 
is made or the cell undergoes apoptosis (Borgulya et al. 1992; 
Livak and Schatz 1996; Kondo et al. 2019). We note that the 
very high numbers of J segments at the TCRα locus, which can 
allow for very high levels of receptor editing, is evolutionarily 
conserved and found in all vertebrates so far studied.

TCR gene rearrangement occurs as thymocytes develop 
within the thymus. In sharks, the thymus is bilaterally located 
dorsomedial to the gill arches and arranged as discrete lobules 
separated by trabeculae (Fig. 3). Similar to the architecture of 
human thymus, each lobule consists of a large outer cortical 
region containing densely packed immature thymocytes 
and branched cortical epithelial cells and a smaller interior 
medullary region of loosely packed mature thymocytes, 
medullary epithelial cells, macrophages, and dendritic cells 
(Luer et al. 1995). The junction between the cortex and medulla 
is called the cortico-medullary junction (CMJ) and the outer 
region of the cortex is called the subcapsular region (Luer et al. 
1995; Criscitiello et al. 2010; Murphy and Weaver 2017). While 
the exact pathway that developing thymocytes take through the 
shark thymus is unknown, studies in mouse and human illustrate 

that stages of thymocyte development correlate with αβ TCR 
gene rearrangement and expression of key proteins on the T 
cell. In sharks, expressions of TCR αβ, MHC I/II, RAG, and 
TdT appear conserved with mammals where TCR γδ expression 
appears different (Criscitiello et al. 2010), though a detailed 
chronology of developmental checkpoints is still lacking in 
sharks (Germain 2002; Kuo and Schlissel 2009; Murphy and 
Weaver 2017).

In mammals, double positive (DP, expressing both  CD8+ 
and  CD4+ co-receptors) thymocytes migrate towards the 
inner cortex as a second wave of RAG activity rearranges 
the α chain V to J gene segments. RAG expression continues 
to mediate rearrangement of the α locus until an MHC-
compatible receptor (i.e., a receptor poised to recognize 
antigen presented by MHC alleles of the individual) is 
rearranged or the cell dies, which happens to the vast majority 
of thymocytes. DP cells that successfully recognize self-MHC 
class I or class II “pass” positive selection and mature to 
express either CD8 or CD4, respectively, becoming  CD8+ or 
 CD4+ single positive (SP) thymocytes. TCRs also are tested 
for strong self-recognition (negative selection) during both 
DP and SP stages, eliminating cells that react to self Ag. In 
mouse thymus, only about 2% of thymocytes survive selection 
mechanisms in the cortex to become mature T cells that enter 
the medulla and exit the thymus to form the peripheral T cell 
repertoire. Thus, the cortex contains immature thymocytes 
actively rearranging and testing their receptor loci, and the 
medulla contains mature naïve CD8 or CD4 SP T cells post-
recombination and selection poised to emigrate from the 
thymus. While a chronology of T cell movements through 
the shark thymus is unknown, we assume for this review 
that events occur in a similar fashion in sharks as it does 
for mammals (e.g., Fig. 8.21 of Janeway’s Immunobiology 
demonstrates the thymocyte developmental stages in mice and 
humans) (Murphy and Weaver 2017). In contrast to the MHC-
restricted αβ T cells, both γ and δ chains of γδ T cells undergo 
receptor gene rearrangement simultaneously with β locus 
rearrangement during the double negative (DN, lacking both 
 CD8+ and  CD4+ co-receptors) stages 2 and 3 (DN2/DN3, 
respectively) of thymocyte development. Signal strength from 
the γδ receptor during the DN3 stage instructs αβ or γδ T 
cell lineage fate, with strong signaling promoting the γδ T 
cell line while weak TCR signaling favoring commitment 
to the αβ T cell line (Lafaille et al. 1990; Kreslavsky et al. 
2010; Fahl et al. 2014). At the DN3 stage, three of the four 
T cell loci (β, γ, and δ) have undergone rearrangement. Cells 
that successfully express TCRβ and lack a strong γδ signal 
undergo proliferation, upregulate CD4 and CD8 co-receptors, 
cease TCRγ rearrangement, and ultimately rearrange 
the TCRα loci, resulting in the deletion of TCRδ genetic 
components from the locus. Progression to the  CD4+/CD8+ 
DP stage commits cells to the αβ T cell lineage (Kreslavsky 
et al. 2010). However, cells that rearrange TCRγ and TCRδ 
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loci successfully express γδ TCR at the surface, stimulating 
clonal proliferation but do not progress to the DP stage and 
thus emerge from the thymus committed to the γδ lineage 
(Kreslavsky et al. 2010). γδ T cells remain DN as mature 
thymocytes and express neither CD8 nor CD4 co-receptors. 
Further, because γδ T cells are not MHC-restricted, they 
likely do not undergo the same positive or negative selection 
processes during development as αβ T cells. The localization 
of shark γδ in the subcapsular region is not conserved with 
mammalian localization, but is consistent with the picture also 
emerging from bony fish (Criscitiello et al. 2010; Aghaallaei 
and Bajoghli 2018).

While RAG mediates receptor gene recombination, 
AID triggers BCR and antibody diversification through 
somatic hypermutation (SHM), class-switch recombination 
(CSR), and immunoglobulin gene conversion (IGC) events 
in humoral adaptive immunity (Muramatsu et al. 2000; 
Arakawa et al. 2002). AID is a member of the much larger 
AID/APOBEC (apolipoprotein B RNA-editing catalytic 
component) family of zinc-dependent deaminases (Liu 
et al. 2018). While zinc-dependent deaminases are found 
in nearly all life forms on Earth (including bacteria, 
archaea, yeast, plants, and animals), the ancestral APOBEC 
emerged at the beginning of the vertebrate radiation, with 
the appearance of AID coinciding with the evolution of 
RAG-mediated immunoglobulin-superfamily adaptive 
immunity and the divergence of cartilaginous fish (Flajnik 
2002; Conticello et al. 2005). APOBEC2 genes, another 
ancestral member of the APOBEC family, are found in other 
vertebrates including bony fish but has not been found in 
sharks (Conticello et al. 2007). AID targets the ssDNA that 
is exposed during transcription of Ig loci in the nucleus, 
catalyzing the deamination of cytidine to uridine within 
the variable regions of lymphocyte antigen receptors. The 
presence of uridine in DNA creates a mismatch between 
guanidine and uridine, which activates DNA repair 
mechanisms (i.e., mismatch repair, base-excision repair) to 
correct the mismatch. B cells are capable of manipulating 
these pathways; so, the repair is less effective at Ig loci, 
resulting in the substitution of non-template bases at the 
affected site (Maul and Gearhart 2010; Álvarez-Prado et al. 
2018).

In the T cell-dependent, antigen-driven immune 
responses of most jawed vertebrates, SHM is used to alter 
the affinity of BCR to Ag during affinity maturation. After a 
naïve B cell is exposed to Ag, it is stimulated to proliferate 
within peripheral lymphoid tissues. In mammals and birds, 
activated B cells develop within germinal centers (GC) in B 
cell follicles within spleen, tonsils, Peyer’s patches, and (in 
mammals) lymph nodes [(Good and Finstad 1966); reviewed 
in (MacLennan 1994; Flajnik 2002)]. Affinity maturation 
occurs in a stepwise manner that repeatedly selects modified 
BCR with improved binding to the original Ag. Mutation 

is biased towards transitions and is targeted to particular 
motifs within variable region nucleotide sequences, focusing 
replacement mutation to particular hotspots of AID activity, 
particularly G and C residues within DGWY and WRCH 
motifs [where D is adenosine (A), guanosine (G), or 
thymidine (T); Y is cytosine (C) or T; W is A or T; and R 
is A or G]. There are intrinsic differences in codon use in 
CDR compared with FR, where CDR favor codons without 
wobble bases to favor amino acid replacement (Chang and 
Casali 1994). Further, an abundance of these motifs within 
CDR concentrates mutation within the Ag-binding regions 
of the structure, thereby improving humoral immunity 
(Muramatsu et al. 2000; Odegard and Schatz 2006; Saini 
and Hershberg 2015; Álvarez-Prado et al. 2018).

However, reptiles, amphibians, and fish do not form GC, 
and B cells develop within lymphocyte-rich follicles of 
splenic white pulp or (in teleost fish) melanomacrophage 
clusters of liver and kidney (Zapata et al. 1981; Rumfelt 
et al. 2002; Zimmerman et al. 2010; Magor 2015; Rios 
and Zimmerman 2015; Neely et  al. 2018). They do, 
however, employ somatic hypermutation and a certain 
level of selection for higher affinity antibodies. SHM is 
well described in the nurse shark B cell receptors (Diaz 
and Flajnik 1998; Diaz et al. 2001; Lee et al. 2002) and 
affinity maturation has been confirmed at the sequence level, 
biochemically and structurally (Dooley and Flajnik 2005; 
Dooley et al. 2006b). Despite the clear use of SHM for some 
level of affinity maturation in ectotherms, there still is much 
to be determined of the anatomy and physiology of these 
selection processes in lower vertebrates. Regardless, until 
recently, the consensus by most immunologists was that T 
cells did not employ SHM at all.

Nurse sharks generate unconventional 
TCR incorporating IgH or IgH‑like V gene 
segments

Nurse sharks construct distinct IgH-TCR chimeric isoforms by 
rearranging IgH V gene segments to a TCR constant region 
(C), thereby enhancing diversity of the TCR repertoire. We first 
identified unusual transcripts in nurse sharks that recombine IgM 
or IgW (as mentioned, similar to IgD) V gene segments to TCRδ 
(or rarely, TCRα) C regions (Criscitiello et al. 2010). The IgH 
V gene segments used by TCR are genetically indistinguishable 
from those used by BCR and consequently, are presumed to 
be from the conventional Ig loci (Fig. 1b). However, the lack 
of an assembled genome or complete Ig/TCR loci in nurse 
shark complicates our complete understanding of the genomic 
origin of these IgHV gene segments. Whether IgHV associated 
with TCR are located within the conventional TCRαδ locus 
(cis-chromosomal rearrangements), the conventional Ig locus 
(trans-locus rearrangements), or in a separate locus altogether 
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(“trans” rearrangements) remains unclear, but we do know IgH 
clusters exist near the TCRαδ locus in nurse shark (Criscitiello 
et al. 2010; Venkatesh et al. 2014; Deiss et al. 2019). We recently 
found that nurse shark TCR utilized at least five different IgM 
and three different IgW V segment groups, and importantly, 
expression of chimeric IgHV-TCRδ chains was comparable 
with, or even exceeded, expression of canonical TCRδ chains 
(Ott et al. 2020). Further, sharks produce functional chimeric 
TCR from the IgMV-2C group which, when used by BCR, 
produces nonfunctional receptors due to defective Ig constant 
region exons. We retain the IgHV designations here when 
referring to these gene segments to avoid confusion. However, 
we acknowledge that these gene segments may require distinct 
names once the nurse shark genome is complete if they are 
indeed embedded within both Ig and TCR loci.

Partial assembly of the TCRδ locus uncovered unique 
Ig-like V gene segments nestled within the TCRαδ 
translocon that group with IgH V phylogenetically, and 
mRNA transcripts indicate these V gene segments (termed 
TCRδ-associated Ig-like V, or TAILV) are used with TCRδ 
(or TCRα) C regions but not with BCR C regions (Deiss 
et  al. 2019). The presence of Ig-like TAILV within the 
TCRαδ locus of nurse sharks (and VHδ gene segments 
in a number of vertebrate lineages) suggests that T cell 
assimilation of both Ig and TCR V gene segments into 
functional TCR was the ancestral state at the genesis of the 
IgSF-based adaptive immune system (more below).

Complex receptors evolved convergently 
in sharks and mammals

Perhaps the most complex TCR isoform in sharks is the 
doubly rearranging NAR-TCR, composed of two V domains 
(each undergoing a separate VDJ recombination event) and 
a TCRδ C domain (Criscitiello et al. 2006) (Fig. 1c). The 
membrane-distal V domain (NARV domain) is closely 
related to IgNAR (variably called “nurse shark antigen 
receptor” and “new antigen receptor”), a distinct IgH isotype 
found only in cartilaginous fish that does not associate with 
light chain (Greenberg et al. 1995; Criscitiello et al. 2006). 
The NARV domain is supported by a membrane proximal 
TCRδ variable domain (STCRδV) that is assembled from 
distinct TCRδ V gene segments (that have lost their leader 
exons) rearranged to the canonical TCRδ D and J gene 
segments (Criscitiello et al. 2006). A draft assembly of the 
nurse shark TCRαδ locus identified tandem blocks of NARV 
V, D, and J gene segments located in a separate stretch of 
the TCRαδ translocon from the canonical TCRδ V-D-J 
gene segments, and the elephant shark confirms NAR-TCR 
genomically in more primitive cartilaginous fish (Venkatesh 
et al. 2007). Within each block, NARV VDJ are located 
upstream of an apparently dedicated STCR δV gene segment 

(Deiss et al. 2019). NAR-TCR is hypothesized to partner 
with TCRγ chain to form an MHC-unrestricted receptor. The 
resulting receptor consists of a protruding NARV domain 
that sits atop a base formed by the γ and δ TCR chains, with 
only the NARV CDRs constructing the predicted antigen-
binding site of the receptor (Criscitiello et al. 2006).

The near simultaneous discovery of a unique TCR locus 
(TCRµ) in monotreme and marsupial mammals further 
blurred the distinction between B and T cell receptor 
components (Parra et  al. 2007; Wang et  al. 2011). In 
opossum (Monodelphis domestica), the TCRµ locus is found 
on a separate chromosome from conventional TCR loci and 
is atypically organized as tandem clusters of Vµ, Dµ, and Jµ 
gene segments followed by a Cµ exon (Parra et al. 2007). 
In addition, an exon encoding a complete V domain, with 
rearranged VDJ gene segments already joined together in 
germline DNA (Vµj), is found between the Jµ and Cµ of 
each cluster. TCRµ expresses two functional transmembrane 
isoforms (Fig. 1d). The short form, TCRµ1.0, encodes a 
receptor chain composed of a single Vµj domain and Cµ, 
forming an invariant binding site that is structurally more 
similar to conventional TCR (Parra et  al. 2007). The 
long form (TCRµ2.0, the dominant isoform in peripheral 
lymphoid tissues) encodes a receptor chain containing two 
V domains and Cµ and is structurally analogous to the NAR-
TCR of sharks (Parra et al. 2007). The membrane-distal V 
of TCRµ2.0 is formed by RAG-recombined V, D, and J 
gene segments that incorporate junctional diversity within 
the V domain, whereas the membrane-proximal V is always 
a (pre-joined) Vµj exon that forms an invariant V domain 
(Parra et al. 2007). The two V domains are linked through a 
mRNA splice site in the Vµj leader sequence that splices the 
recombined VDJ of the membrane-distal V to FR 1 of the 
membrane-proximal V (Parra et al. 2007). V gene segments 
of both variable domains (membrane-distal V domain of 
TCRµ2.0 and the sequence corresponding to FR1 through 
FR3 of Vµj in both isoforms) are phylogenetically more 
similar to IgH V gene segments (VH) while Cµ was derived 
from a TCRδ ancestor (Parra et al. 2007, 2008).

Like that of opossum, the monotreme platypus 
(Ornithorhynchus anatinus) TCRµ locus occurs in a separate 
location from conventional TCR genes, but platypus express 
only a single TCRµ isoform composed of two V domains that 
each somatically rearrange V, D, and J gene segments (Wang 
et al. 2011). The membrane-distal V domain (V1) rearranges 
two to four Dµ gene segments and adds non-template (N) 
nucleotides during assembly. However, while the membrane-
proximal V domain (V2) incorporates both palindromic (P) 
and N nucleotide additions, it does not appear to use Dµ gene 
segments, likely because the locus encoding the V2 domain 
lacks D segments (Wang et al. 2011). Thus, V1 encodes 
longer and more junctionally diverse CDR3 than V2. As in 
opossum TCRµ, both V1 and V2 domains of platypus TCRµ 
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are more similar to IgH V while Cµ is related to TCRδ (Wang 
et al. 2011).

The discovery of TCR homologs of similar structure in 
older mammalian clades to shark NAR-TCR suggests that 
this structure confers useful physiology and evolved multiple 
times in vertebrates. That NAR-TCR is found in the genome 
of elephant shark (an older Holocephalan cartilaginous fish 
than sharks and rays) yet IgNAR is not (Venkatesh et al. 
2007), suggests that the T cell NAR variant may have 
given rise to the B cell NAR variant (Criscitiello 2014); 
alternatively, Holocephalans may have lost IgNAR.

VHδ gene segments discovered in sharks 
and most vertebrate groups

Sharks and marsupials/monotremes are not the only species 
to use IgH variable gene segments in their TCRδ repertoire. 
Functional IgH-like TCRδ V (VHδ) gene segments 
have been found in the genomes representing all extant 
gnathostome groups except teleosts and placental mammals. 
The Sarcopterygian coelacanth TCRαδ locus includes 
a track of 25 VHδ gene segments between the TCRα and 
TCRδ gene segments (Saha et al. 2014). In the amphibian 
Xenopus tropicalis, the 5′ end of the conventional TCRαδ 
locus encodes a separate cluster of VHδ gene segments that 
are expressed exclusively with a second distinct TCR δC 
(Parra et al. 2010). Some birds express VHδ gene segments 
with TCRδ as well. In the passerine zebra finch, a single VHδ 
gene segment is present in the TCRαδ locus and is expressed 
with TCR δC. However, the conventional TCRαδ locus of 
galliform birds (chicken, turkey, and likely duck) contains 
no VHδ segment. Instead, Galliformes have a second, non-
syntenic TCRδ locus containing a single VHδ-Dδ-Jδ-Cδ 
cluster that rearranges to form one TCRδ product (Parra et al. 
2012b). The only mammal known to have functional VHδ 
gene segments is the monotreme platypus, which has a single 
VHδ gene segment located within the TCRαδ locus (Parra 
et al. 2012a). However, we found a single VHδ pseudogene in 
the TCRαδ locus of the Florida manatee (Breaux et al. 2018), 
suggesting that at least some eutherian mammals may have 
used similar gene segments at one time.

Thus, a much clearer picture is emerging of the ancestral 
antigen receptor locus from diverse extant vertebrates. Leading 
the way, the linkage of the TCR αδ locus with IgH elements 
is a recurring theme from cartilaginous fish to mammals. 
Recent work in reptiles substantiates VHδ segments in 
crocodilian TCR αδ loci and suggests further modeling of 
multiple insertion, duplication, and sometimes loss (teleosts) 
of B cell receptor elements in the TCR (Wang et al. 2020). 
In the past decade, what at first seemed to be merely curious 
findings of IgH in TCRδ of shark and amphibian (Criscitiello 
et al. 2010; Parra et al. 2010) have since spring-boarded our 

understanding of the natural history of the adaptive immune 
system. Now, a comprehensive hypothesis of the dawn of the 
system is supported, which includes not only the rearranging 
antigen receptor loci but also the MHC in a “primordial 
immune complex” whose components have evolved in four 
paralogous genomic regions since the two rounds of genome 
duplication in early vertebrates (Ohta et  al. 2019). This 
genomic association is far reaching beyond Ig and TCR, to 
include natural killer receptors, cytokines, co-stimulation, and 
even the (likely) older variable lymphocyte receptors (VLR) 
of the jawless vertebrates, extant lamprey, and hagfish.

Somatic hypermutation augments γδ T cell 
receptor repertoire diversity in sharks

In addition to capitalizing on the availability of Ig V gene 
segments to refashion TCR γδ chains, sharks exploit 
traditional B cell diversifying mechanisms to expand their 
TCR repertoires. One such mechanism is the use of AID-
catalyzed SHM to augment TCR repertoire diversity. Chen 
et al. (2009) reported the first evidence of targeted mutation 
to TCRγ V regions in the sandbar shark (Carcharhinus 
plumbeus). These authors sequenced the TCRγ locus and 
then evaluated the V region repertoire diversity using a 5′ 
RACE library from a single animal. Typical of TCR loci in 
many other vertebrates, sandbar shark TCRγ is arranged as 
a single translocon containing at least five V gene segments, 
three J gene segments, and a single C region. Expressed 
transcripts revealed no V segment bias for four of the five 
known Vs but a reduction in the use of the most 5′ (distal) 
V segment in the locus (Chen et  al. 2009). However, 
comparison of cDNA clones to genomic sequences revealed 
a high frequency of mutation that could not be attributed to 
allelic variation or PCR error. Mutation patterns mirrored 
those of activated B cells undergoing SHM during affinity 
maturation, with mutation targeted to AID hotspot motifs 
within CDR of V gene segments (specifically CDR1), 
biased towards AID-favored G and C nucleotides, favoring 
transitions over transversions, and including both single-base 
and consecutive (tandem)-base changes that altered template-
coded amino acids (Lee et al. 2002; Diaz et al. 1999; Chen 
et al. 2009, 2012). Because there was no evidence of antigen 
selection of mutated TCR [CDR and FR showed similar 
ratios of replacement (R) and silent (S) changes], Chen et al. 
(2012) concluded that TCRγ instead utilizes SHM to enhance 
repertoire diversity in γδ T cells. Research in nurse shark Ig 
light chains (IgL) also concluded that antigen did not drive 
selection except by limiting mutation to FR2, suggesting a 
mechanism for maintaining structural stability rather than 
enhanced affinity (Zhu and Hsu 2010). However subsequent 
work has shown significant mutation and evidence of 
selection in mature sharks (Iacoangeli et al. 2017).
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Some mammals also hypermutate γδ TCRs

Similar analyses in both γ and δ chain of dromedary camel 
(Camelus dromedaries) indicated that mutation altered both 
chains of γδ TCR in camelids (Antonacci et al. 2011; Vaccarelli 
et al. 2012; Ciccarese et al. 2014). Using RT-qPCR and a 5′ 
RACE library, Antonacci et al. (2011) evaluated the expressed 
TCRδ chain repertoire of peripheral lymphoid tissues (spleen, 
tonsils, and blood) from a single adult camel. These transcripts 
were used to identify genes encoding TCRδ V gene segments in 
the germline. Analyses identified 13 putative germline TCRδ V 
gene segments belonging to 3 family groups. Comparing these 
germline sequences to cDNA clones revealed mutation to V 
regions at a rate (0.013/bp in spleen) similar to those reported 
in sandbar shark TCRγ and in mouse and shark IgL (see above). 
However, although nucleotide changes did appear to favor 
transitions (and included both point and tandem base changes 
in spleen), mutation did not target CDR over FR but instead 
was distributed throughout the V region (Antonacci et al. 2011). 
Comparison of synonymous and nonsynonymous (replacement) 
changes suggested (like in sandbar shark) that mutated receptors 
were not under antigen selection. While the authors did not 
report specific analyses to examine whether mutation was AID-
mediated (e.g., bias to AID-favored G and C bases or targeted 
mutation to AID hotspot motifs), they concluded that mutation 
in TCRδ chain did contribute to γδ TCR repertoire diversity, but 
the mutations in FR and CDR did not suggest antigen selection 
(Antonacci et al. 2011). Analysis of camelid thymus may be 
needed to confirm that mutation is in the primary repertoire.

In a follow-up study, the same group reported evidence 
that mutations to genes encoding the TCRγ chain generate 
diversity within the γδ TCR repertoire (Vaccarelli et al. 
2012). The group assembled and mapped the TCRγ locus 
from PCR products and chromosome walking fragments to 
identify two V-J-J-C cassettes within the TCRγ locus. While 
a cluster organization is atypical for TCR loci in general, 
this same basic cassette (V-J-J-C) structure is found in the 
TCRγ locus of a number of organisms (including sheep, 
cattle, and buffalo) and modifications to this structure are 
found in mice (Vernooij et al. 1993; Antonacci et al. 2007; 
Vaccarelli et al. 2008). An analysis of expressed transcripts 
from a spleen 5′ RACE library revealed targeted mutation 
biased towards G and C bases within AID-favored hotspot 
motifs. Further, although there was (again) no evidence 
of selection for modified receptors, the accumulation of 
nonconservative changes within CDR (specifically CDR2) 
intimated that somatic mutation contributed to the overall 
paratope diversity of TCRγ V regions (Vaccarelli et al. 
2012). In silico structural models showed that mutation of 
γ or δ V regions enhances the structural stability of the γδ 
TCR, regardless of where (FR or CDR) these mutational 
changes occur within the V region (Ciccarese et al. 2014).

The presence of mutation within γδ TCR genes is not 
altogether surprising given the ability of γδ T cells to traverse 
the boundary between the innate and adaptive immune 
systems. Similar to αβ T cells, γδ T cells recombine V, (D), and 
J gene segments to create a highly specific adaptive repertoire 
with immunological memory (Kazen and Adams 2011). 
However, γδ T cells can assert an innate role in immunity as 
well, producing cytokines (e.g., TNFα and IFN-γ) in response 
to infection or tumor antigens (Gober et al. 2003; Beetz et al. 
2008). In humans, γδ T cells can act as efficient antigen-
presenting cells to  CD8+ αβ T cells, synthesizing antigens 
through immunoproteasomes for cross-presentation via MHC 
class I (Brandes et al. 2009). Additionally, specific subsets of 
γδ T cells in humans (Vδ2 Tregs) express FOXP3 (forkhead/
winged helix transcription factor box P3) and function as 
regulatory T cells, suppressing proliferation of peripheral 
blood mononuclear cells through the TGF-β1 signaling 
pathway (Casetti et al. 2009). Thus, γδ T cells combine both 
immediate innate-like responses to infection with on-going 
adaptive recognition responses [also reviewed in Kabelitz 
(2011)]. While some γδ TCR bind free antigen in a manner 
similar to BCR, some γδ TCR interact with non-classical MHC 
as tissue-specific receptors using restricted sets of variable and 
joining genes with limited junctional diversity (Allison and 
Garboczi 2002; Adams et al. 2005; Kazen and Adams 2011). 
In either case, there are some conserved binding features 
among γδ T cells from diverse species and tissues (Hayday and 
Vantourout 2020) that SHM-mediated changes to paratopes 
could offer flexibility to recognize new pathogens or adapt to 
rapidly changing ligands within restricted environments.

Could SHM be employed by αβ T cells?

While it is clear that T cells retain the same basic machinery 
that allows B cells to affinity mature receptors (Gellert 2002), 
somatically mutating αβ TCR may not provide the same 
benefits as to BCR or γδ TCR. Because αβ T cells are restricted 
to binding antigen in the context of self MHC, altering receptors 
that already have passed selection in the thymus could have 
profound consequences on receptor functionality. In fact, early 
studies in humans indicated that SHM in αβ T cells occurs 
only as a result of a diseased state (e.g., alloreactive T cell 
hybridomas, HIV-1, T cell lymphoma, lung, and liver tumors) 
(Augustin and Sim 1984; Cheynier et al. 1998; Okazaki et al. 
2003; Rucci et al. 2006; Morisawa et al. 2008). Thus, while 
AID-mediated mutation may augment certain populations of 
T cells, it is clear that mutation is not likely to be beneficial. 
However, the assumption that αβ T cells cannot employ AID 
for any reason drove decades of (especially comparative) 
immunologists to disregard AID-driven mechanisms as an 
explanation for aberrations in their datasets.
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Analysis of T cells from periarteriolar T cell sheath (PALS) 
and GC of immunized B10.A transgenic mouse spleen revealed 
mutation to V regions of TCR α chain (but not β chain) that 
was substantially higher than expected for PCR error. Further, 
mutation to TCRα V mirrored that of IgH V acquired from 
adjacent sites within the GC, suggesting a mechanism for SHM 
in T cells (Zheng et al. 1994). The significance of these results 
was questioned, citing insufficient evidence to support the claim 
(Bachl and Wabl 1995). However, the mutation may suggest that 
AID expression within splenic GC (during affinity maturation 
of B cells) also can impact V regions of TCRα.

In a study attempting to identify targeting elements of 
SHM in mice, Hackett et al. (1992) designed a rearranged 
TCR transgene capable of being expressed on B cells. 
The authors then examined cDNA transcripts of both 
endogenous IgH and TCR transgenes expressed on B 
cells to determine if TCR are targeted by SHM. Though 
they did observe some level of mutation (0.00017/bp) 
in the TCR transgenes, the frequency of mutation was 
minimal compared with rates observed in endogenous 
IgH genes (0.0021/bp), suggesting that TCR genes 
do not contain the required transcriptional elements 
for SHM (Hackett et al. 1992). In another study using 
Cre-ires-hCD2 (Cre) transgenic mice with a genetic 
reporter knocked into the AID locus, Qin et al. (2011) 
assessed endogenous AID production by B and T cells 
within spleen, lymph nodes, and Peyer’s patches. The 
authors found that a surprisingly large number of  CD4+ 
memory T cells in these tissues express AID, likely 
resulting from T cell activation in peripheral lymphoid 
tissues. Activation of these T cell subsets produced a 
unique cytokine profile that increased with mouse age, 
suggesting a function in cellular aging. Though they did 
not examine cDNA transcripts for evidence of mutation, 
Qin et al. (2015) suggested that AID may play a role in 
T cell function or tumorigenesis. In conclusion, to date, 
data suggest that TCR αβ mutation in mammals seems 
to play little or no role in normal immune physiology.

Sharks target AID‑mediated SHM to TCRα

While we found no study that specifically assesses the 
presence or absence of SHM in endogenous TCR, the fact 
that SHM is not commonly observed in mice or humans 
(except in diseased states) led immunologists to assume 
that αβ T cells cannot utilize SHM or any other receptor-
modifying mechanism (Kronenberg et al. 1986; Vitetta et al. 
1991). The machinery for both endogenous and exogenous 
antigen presentation pathways seems to be shared among 
vertebrates from mammals to sharks, suggesting similar 
MHC restriction of TCR αβ (Ohta et al. 2002; Criscitiello 
et al. 2012, 2013). However, we recently reported evidence 

that nurse sharks enrich their TCR repertoire by exploiting 
SHM during repertoire generation in the thymus (Fig. 2). 
Real-time RT-qPCR and in situ hybridization expression 
data from nurse shark thymus confirmed AID expression 
in thymus at levels roughly half those observed in spleen 
(where B cell SHM occurs) (Ott et al. 2018). Using probes 
for in situ hybridization specific to either TCR αC or AID 

Fig. 2  Cartoon depictions of putative assembled T cell receptors 
(TCR, top of each panel) and transcripts (bottom of each panel) illus-
trating the relative extent of somatic hypermutation (SHM) acquired 
by variable (V) regions of TCR chains in nurse sharks. a While V 
regions of all canonical TCR chains assimilate SHM, alpha chain 
incorporates significantly more mutation than other chains [αβTCR: 
alpha chain, α (green); beta chain, β (black); and γδTCR: gamma 
chain, γ (gold); delta chain, δ (blue)]; b Immunoglobulin heavy chain 
(IgH) V gene segments associated with TCRδ (or rarely TCRα) accu-
mulate mutation within CDR2 regions at rates substantially lower 
than when used by immunoglobulin C regions; c TCR-associated 
Ig-like V (TAILV) gene segments, which associate with either TCRδ 
or TCRα C, do not appear to undergo SHM; d doubly-rearranging 
NAR-TCRδ are composed of two variable domains that undergo sep-
arate RAG-mediated VDJ recombination events—a membrane-distal 
IgNAR-like V domain (NARV, purple) supported by a membrane-
proximal TCR δV domain (STCRδV, red) and associate with TCR δC 
incorporate few mutations to wither V domain [NAR: nurse shark (or 
new) antigen receptor; RAG: recombination activating genes]. Figure 
created with BioRender.com
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on thymus tissue, we observed a consistent “ring” pattern, 
where cells expressing both TCR αC and AID message 
surrounded a central cell expressing only TCR αC. Further, 
we determined that AID expression is localized to the 
inner cortex and medulla adjacent to the cortico-medullary 
junction, coincident with the location of TCRα receptor 
editing and thymic selection in mice (Huesmann et al. 1991; 
Nakagawa et al. 2012) (Fig. 3). Thus, T cells actively express 
AID during RAG-mediated somatic recombination of the 
alpha locus, permitting SHM of TCRα chain sequences 
while cells are being selected in the thymus (Ott et al. 2018).

We then assessed TCR transcripts for evidence of 
mutation and analyzed mutation patterns for similarities 
to AID-catalyzed mutation in affinity-matured BCR. V 
region sequences of BCR evolved to maximize the impacts 
of mutation, targeting replacement mutation to antigen 
binding CDR and limiting mutation to structurally important 
framework regions (FR) (Saini and Hershberg 2015). SHM 
in mouse, human, and shark BCR is biased towards G/A and 
C/T transitions and targeted to AID-preferred nucleotide 
motifs (DGYW/WRCH) (Anderson et  al. 1995; Diaz 
et al. 1998; Lee et al. 2002; Rumfelt et al. 2002; Li et al. 
2004; Odegard and Schatz 2006; Zhu and Hsu 2010). In 
addition to SHM-induced point mutations observed in other 
vertebrates, nurse shark IgH, IgL, and IgNAR sequences 
generate tandem substitutions of 2–5 adjacent nucleotides 
(Greenberg et al. 1995; Lee et al. 2002; Malecek et al. 2005; 
Dooley and Flajnik 2006; Dooley et al. 2006a). Though 
tandem mutations demonstrate a bias towards AID hotspot 
motifs, they do not typically favor transitions, suggesting 
that an additional mechanism may contribute to V region 
changes in nurse sharks (Zhu and Hsu 2010). Despite decades 
of assertions that SHM does not shape MHC-restricted αβ 
TCR repertoires, we identified SHM of nurse shark TCRα 
transcripts characteristic of AID-catalyzed SHM in shark 
BCR—point and tandem mutations focused on CDR, biased 
towards transitions, and targeted to AID motifs. Further, we 
detected SHM in transcripts from both thymus and peripheral 
lymphoid tissues, suggesting mutated receptors originated in 
the thymus prior to contact with foreign antigen. Together 
with corresponding evidence that AID expression overlaps 
TCRα chain rearrangement and selection in thymus, these 
data indicate that AID catalyzes SHM of TCRα for repertoire 
diversification during T cell development, implying that SHM 
contributes to receptor modifications that enhance selection 
(Ott et al. 2018).

Our discovery of AID-mediated somatic mutation in 
TCRα during primary lymphocyte development in thymus 
compelled us to examine the extent to which SHM alters 
the primary repertoire of other canonical (β, γ, and δ) and 
non-canonical (Ig or Ig-like) TCR chains. We examined 
transcripts from 5′ RACE cDNA libraries from nurse shark 

thymus to analyze mutation patterns in unconventional 
TCR chains and found that SHM targets TCR sequences 
preferentially based (generally) on the V segment used 
and (specifically) the C region associated with it. Despite 
the varying presence of AID hotspot motifs within V gene 
segments of all canonical and non-canonical TCR chains, 
only TCRα V accumulated significant mutation (Fig. 2b). 
Though TCR β, γ, and δ chains exhibited limited mutation, 
patterns paralleled those observed in BCR and TCRα of 
nurse sharks, with point (and tandem) mutation biased 
towards transitions and focused on AID hotspot motifs within 
CDR. In TAILV and both V domains of NAR-TCR V, the 
infrequent mutation we observed likely reflected the limited 
number of AID hotspot motifs present in sequences from 
these chains. Thus, AID-catalyzed mutation does not affect V 
segments of all chains equally. Comparing mutation between 
genomic V gene segments used with both alpha and delta C 
regions, when an alpha/delta V segment is associated with 
TCR αC, it acquired more than twice as many mutations as 
when it was associated with TCR δC regions, suggesting 
that, in thymus, AID displays a proclivity for mutating V 
regions of the TCRα chain. Even IgHV gene segments, laden 
with abundant AID-preferred motifs, accrued substantially 
lower rates of mutation than TCRα V regions associated with 
TCRα C regions. Further, mutation was considerably lower in 
IgHV associated with TCR in thymus than one would expect 
of the same IgHV associated with a BCR undergoing affinity 
maturation in spleen. The increased mutation in V regions 
associated with TCR αC in thymus suggests that the DNA 
motifs associated with this C exon are particularly important 
for AID targeting (Ott et al. 2020).

Comparison of human and nurse shark TCR Vα genes 
indicates that Vα of nurse sharks contain more AID-preferred 
hotspot motifs (WRCH/DGYW) per sequence than do human 
Vα segments, and these motifs occur 2–3× more often in shark 
Vα CDR than in human CDR. This suggests that, while the costs 
associated with somatically mutating TCR genes may outweigh 
the benefits for humans and mice, the same may not be true for 
more evolutionarily basal organisms like sharks. Sharks may be 
more resistant to the dangers of aberrant mutation because of 
their inherently slow rates of molecular mutation (10× slower 
than in mammals), long lifespans (> 272 years in Greenland 
shark), and (in many species) large body size (Martin 1999; 
Nielsen et al. 2016; Marra et al. 2019). Additionally, because 
of their considerable size and highly repetitive nature (> 50%), 
shark genomes may exhibit more flexibility than those of mice 
or humans (Stingo and Rocco 2001; Rocco et al. 2002, 2007; 
Hara et al. 2018). However, to realize any benefit of SHM, TCR 
modification would have to occur prior to or coincident with 
selection events in the thymus, since changes to a receptor that 
already passed selection could negatively affect its ability to bind 
self-MHC or permit binding to self-antigen.
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Fig. 3  In nurse sharks, AID is proposed to catalyze somatic hypermu-
tation (SHM) of TCR alpha chain genes (α chain) during the late dou-
ble-positive stage of thymocyte development, likely producing new 
TCR paratopes capable of passing thymic selection. a Single-mole-
cule RNA fluorescence in  situ hybridization (FISH) probing fixed 
shark thymus sections simultaneously for AID (probes labeled with 
Quasar 670; pseudo colored red) and TCR α chain (probes labeled 
with CalFluor Red 610; pseudo colored green) and counterstained 
with DAPI (blue). TCRα is highly expressed within thymic cortical 
regions near the cortico-medullary junction (CMJ), suggesting that 
late TCR α chain gene rearrangement is occurring here. Coincidently, 
cells expressing high levels of AID encircle groups of cells express-
ing high levels of the TCR α chain, suggesting that AID is involved 
in SHM of the α chain V region during late stages of positive selec-
tion or early stages of negative selection (Ott et  al. 2018) (scale 
bars: 150  µm, 75  µm, and 30  µm at 10×, 20×, and 63× magnifica-
tion, respectively. White box indicates the magnified regions of the 
20× image shown in the 63× image). b Theoretical model illustrating 
putative rearrangement of TCR beta chain (β chain) and α chain in 
nurse shark thymus, based on what is known in mammals. CD4/CD8 

double negative (DN) thymocytes utilize RAG to rearrange β chain in 
the sub-capsular region (SCR) and outer cortex. Cells with productive 
β chain arrangements then proliferate, expressing both CD4 and CD8 
as double positive (DP) thymocytes. The strong distinction between 
small thymocytes in the cortex and larger cells in the medulla has 
been shown in sharks, as well as RAG and TCR β expression in the 
sub-capsular regions (Criscitiello et  al. 2010). As DP thymocytes 
move toward the inner cortex and CMJ where RAG-mediated α chain 
re-rearrangement (editing) has been shown to occur in mice, shark 
(but not mouse) thymocytes begin to express AID, rescuing non-
productive receptor rearrangements from apoptosis through receptor 
editing and/or receptor salvaging via SHM. In the latter case, AID-
catalyzed SHM can produce TCR with improved affinity to MHC: Ag 
complexes (to pass positive selection) or reduce recognition of self-
peptide, rescuing self-reactive thymocytes from apoptosis (to pass 
negative selection). Salvaged thymocytes then express either CD4 or 
CD8 on their surface as single-positive (SP) cells [AID: activation-
induced cytidine deaminase; RAG: recombination activating genes]. 
Figure 3 b created with BioRender.com
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Importance of studying immune 
mechanisms in non‑traditional animal 
models

The basic components of adaptive immunity (RAG-mediated 
recombination of V, D, and J gene segments, B and T cell 
receptors, MHC class I and II, and AID-mediated somatic 
diversification mechanisms) are similar among extant jawed 
vertebrate groups, owing to the fairly recent divergence (roughly 
480 Mya) of gnathostomes from their jawless ancestors (Hsu 
2009; Janvier 2011; Brazeau and Friedman 2015; Flajnik 
2018). Since this divergence, host immune systems evolved 
quite rapidly—perhaps as a consequence of rapidly evolving 
pathogens and influenced by varying developmental constraints, 
environmental adaptations, and population dynamics—
ultimately permitting new, innovative features to supplant 
existing ones (Bailey et al. 2013). Consequently, gnathostomes 
evolved various accessory immune components as solutions to 
specific selective pressures of their environments (e.g., heavy-
chain only antibodies of camels and sharks), and these accessory 
features can provide alternate views of the adaptive immune 
system through the window of evolution.

Compared with mice and humans, sharks have retained 
impressive TCR repertoire diversification strategies. Nurse 
sharks assemble TCR from IgM or IgW (IgD) V gene segments 
(from the Ig locus, TCR locus, or an altogether unique locus) 
or Ig-like TAILV, expanding the combinatorial potential of 
developing receptors (Criscitiello et  al. 2010; Deiss et  al. 
2019). Additionally, doubly rearranging NAR-TCR combines 
both an Ig-like (NAR) V domain with a supporting TCR 
V domain to create a novel receptor type (Criscitiello et al. 
2006). These diversifying strategies are not limited to nurse 
sharks as NARTCR have definitively been found in elephant 
shark and Southern blotting demonstrated its presence in 
all tested Elasmobranch species (Criscitiello et al. 2006). In 
addition, despite their ancient origin and incredible diversity, 
all Elasmobranch species tested have preserved their vast array 
of antigen receptor loci, including IgM, IgW, IgNAR, four 
IgL isotypes, and as mentioned, NARTCR. Thus, while nurse 
sharks have provided the historical model for structure and 
function of the immune system, the molecules and mechanisms 
described here likely extend to all cartilaginous fish, at least the 
Elasmobranch sharks, skates, and rays.

Coelacanths, Xenopus, passeriform birds, and platypus all 
harbor Ig-like V gene segments (VHδ) in their conventional 
TCRαδ loci, while galliform birds house these Ig-like VHδ 
segments in a separate locus (Parra et al. 2010, 2012b; Parra 
and Miller 2012; Saha et al. 2014; Deiss et al. 2019). Marsupial 
and monotreme mammals acquired an additional T cell locus 
(TCRµ) that somatically recombines V, D, and J gene segments 
(or uses pre-joined segments) into a unique TCR chain with 
two variable domains, the most distal of which resembles 

IgH (Parra et al. 2007; Wang et al. 2011). Not only do nurse 
shark T cells borrow Ig components when recombining and 
assembling receptors, they derive additional diversity by 
pirating mechanisms traditionally used by B cells (i.e., AID-
catalyzed SHM) to alter antigen binding sites. However, 
unlike B cell IgH that employ SHM to affinity mature 
antigen receptors in secondary lymphoid tissues, nurse sharks 
incorporate AID-catalyzed SHM in the thymus, most likely 
to salvage TCR in danger of failing thymic selection. Sandbar 
shark and dromedary camelids also have been shown to use 
SHM to alter V region sequences of γδ TCR (Chen et al. 2012; 
Ciccarese et al. 2014). More recently, reports indicate that the 
teleost fish Ballan wrasse (Labrus bergylta) somatically mutate 
both V and C regions of TCRα (Bilal et al. 2018) (curious 
as allelic polymorphism at TCRα C has been described in 
multiple other teleosts (Criscitiello et al. 2004). While these 
studies in sandbar sharks, Ballan wrasse, and camelids were 
limited to peripheral lymphoid tissues, it is possible, and we 
think likely that SHM-induced changes to T cells originated 
in the thymus of these groups as well.

Agnathan vertebrates (jawless hagfish and lamprey) evolved 
an alternate adaptive immune strategy to the immunoglobulin 
superfamily-based system of jawed vertebrates. The variable 
lymphocyte receptor (VLR)-based system also incorporates a 
tripartite adaptive defense strategy with three distinct somatically 
assembled receptor types. The three lineages of agnathan 
variable lymphocyte receptors (VLR A, B, and C) are analogous 
to the B cell and T cell lineages of gnathostomes (Das et al. 
2015). Like B cells, VLR type B (VLRB) can be membrane-
bound or secreted and functions in adaptive humoral responses 
(Alder et al. 2005; Pancer et al. 2005). Both VLR type A 
(VLRA), transcriptionally more similar to αβ T cells, and VLR 
type C (VLRC) transcriptionally similar to γδ T cells, occur only 
as a membrane-bound receptors and are predicted to function 
(as do T cells) in cell-mediated immune responses (Alder et al. 
2005; Kasamatsu et al. 2010). However, unlike αβ T cells, 
neither VLRA nor VLRC seem to require antigen presentation 
for recognition (Deng et al. 2010). The similarities in immune 
defense strategies between agnathan and gnathostome 
vertebrates suggest that there were three lymphocyte lineages 
present in the vertebrate common ancestor, with discernible 
components of the immune system labor partitioned among 
them (Flajnik 2014). Hagfish and lamprey assemble VLR 
genes into lymphocytes using two AID homologs (CDA1 and 
CDA2), and CDA-mediated gene rearrangement in lampreys 
occurs through a serial gene conversion mechanism similar to 
AID-catalyzed Ig gene conversion in some birds and mammals 
(Rogozin et al. 2007; Guo et al. 2009). CDA1 expression occurs 
selectively in VLRA (and likely VLRC) lymphocytes within 
a thymoid (thymus like) region and orchestrates VLRA (and 
VLRC) gene recombination, while CDA2 expression occurs 
exclusively in VLRB lymphocytes and mediates VLRB gene 
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assembly (Rogozin et al. 2007; Guo et al. 2009). Thus, there 
is a precedent of AID (or its homologs) being used in thymus 
(or thymoid organ) during primary lymphocyte diversification 
in vertebrates, and the use of AID during primary T cell 
development in nurse sharks may suggest that AID (or likely 
another APOBEC-family mutator)-mediated lymphocyte 
diversification in the earliest vertebrate ancestor, i.e., sharks 
retained the AID diversification mechanism present in the 
agnathan/gnathostome ancestor. The potential consequences 
of indiscriminate AID transcription (e.g., autoimmune 
disease, cancer) within the highly regulated, progressively 
compartmentalized nuclei of warm-blooded animals could 
have contributed to the loss of this ancestral mechanism in later 
vertebrates (like mice and humans). However, AID may even be 
capable of unheralded functions in mammals as well, such as 
deletions in the ultralong CDR3 of cattle IgH (Deiss et al. 2017).

Further insight into these similarities and differences in 
defense strategies could help elucidate the origins of lymphocyte 
receptors, making the study of “lower” fish immune systems 
ideal for comparative studies of immune evolution. It is clear that 
RAG often draws from B and T cell components in assembling 
mature variable domain encoding exons, particularly for TCR 
δ. It is also clear that AID activity is confined neither to B cell 
receptors nor the immunized post-antigen repertoire. The work 
reviewed here in nurse shark and other diverse vertebrates 
mandates a more careful mechanistic analysis of the activity of 
these two somatic diversification catalysts in both primary and 
secondary lymphoid tissues to discover the boundaries of their 
shaping of lymphocyte antigen receptor repertoires in health and 
disease.
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