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A B S T R A C T   

The low diversity in marine mammal major histocompatibility complex (MHC) appears to support the hypothesis 
of reduced pathogen selective pressure in aquatic systems compared to terrestrial environments. However, the 
lack of characterization of the aquatic and evolutionarily distant Sirenia precludes drawing more generalized 
conclusions. Therefore, we aimed to characterize the MHC DQB diversity of two manatee species and compare it 
with those reported for marine mammals. Our results identified 12 and 6 alleles in T. inunguis and T. manatus, 
respectively. Alleles show high rates of nonsynonymous substitutions, suggesting loci are evolving under positive 
selection. Among aquatic mammals, Pinnipeda DQB had smaller numbers of alleles, higher synonymous sub-
stitution rate, and a dN/dS ratio closer to 1, suggesting it may be evolving under more relaxed selection 
compared to fully aquatic mammals. This contradicts one of the predictions of the hypothesis that aquatic en-
vironments impose reduced pathogen pressure to mammalian immune system. These results suggest that the 
unique evolutionary trajectories of mammalian MHC may impose challenges in drawing ecoevolutionary con-
clusions from comparisons across distant vertebrate lineages.   

1. Introduction 

Marine mammal immunogenetics has been the focus of growing 
research to assist with characterizing genetic diversity in imperiled 
populations and better understand the evolution and physiology of 

adaptive immunity in a radically different environment compared to 
model terrestrial mammals. Major histocompatibility complex (MHC) 
genes have key functions in the adaptive immune response by encoding 
polymorphic antigen presenting proteins. Research in marine mammals 
MHC genes began the late 1980s assessing diversity on two major 
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taxonomic groups, Cetacea and Pinnipeda (Acevedo-Whitehouse et al., 
2018; Manlik, 2015; Moreno-Santillán et al., 2016; Murray and White, 
1998; Slade, 1992; Trowsdale et al., 1989; Weber et al., 2004; Xu et al., 
2010). 

The first reports on Cetacea (Trowsdale et al., 1989) and Pinnipeda 
(Slade, 1992) MHC found restricted polymorphism. This observation led 
to the hypothesis that the marine environment may challenge pop-
ulations with reduced selective pressure on the MHC, leading to relaxed 
evolution and smaller gene diversity. Slade (1992) also provided an 
important framework for future research on the topic, suggesting three 
predictions to be tested: i) low MHC diversity will be found in all marine 
mammals; ii) completely marine Cetacea and Sirenia will have lower 
MHC diversity compared to Pinnipeda; and iii) higher MHC diversity 
will be found in Pinnipeda species that spend more time ashore and in 
seal colonies close to terrestrial animal populations. Since then, several 
reports, with species under varied conservation status, have provided 
mixed support to this hypothesis (refences listed in Supplementary 
Material 1). Most of these studies focused on Slade’s (1992) first pre-
diction, including an elegant comparison of cetacean and terrestrial 
mammal DQB genes, suggesting indeed weaker balancing selection in 
the former (Villanueva-Noriega et al., 2013). Overall, DQB diversity has 
been more comprehensively characterized across several species of 
marine mammals, with less reports on other MHC genes, such as DRB, 
DQA and class I loci. 

Despite the overall advance in understanding aquatic mammal MHC 
evolution, the lack of reports on sirenians hampers a more compre-
hensive analysis. The order Sirenia is currently represented by two 
extant families and genera, including three manatee species and one 
dugong. While dugongs are the only exclusively marine sirenian species, 
manatees can be found either obligately in freshwater (the Amazonian 
manatee Trichechus inunguis) or in coastal marine and freshwater envi-
ronments (the West Indian manatee T. manatus and African manatee 
T. senegalensis, with wide variation in usage of both habitats by distinct 
populations (Castelblanco-Martínez et al., 2021)). The scarcity of fossil 
records and the availability of a single manatee species genome poses an 
obstacle on the understanding of evolutionary relationship among the 
three taxa. Nonetheless, the most comprehensive analysis to date, using 
a mitogenome from each manatee species, supports the divergence of 
T. manatus and T. inunguis around 1.3 mya, with T. senegalensis as a sister 
taxon, sharing a common ancestor with the other species 6.5 mya (de 
Souza et al., 2021). 

Presently the three recognized manatee species are all vulnerable to 
extinction due to habitat loss, hunting and other anthropogenic factors 
(IUCN (Deutsch et al., 2008; Keith Diagne, 2015; Marmontel et al., 
2016);). Reports on West Indian manatee populations showed relatively 
low genetic diversity in mtDNA markers in most of their range and 
population fragmentation, with three lineage clusters of low connec-
tivity (Vianna et al., 2006). The Brazilian population of T. manatus has 
low mtDNA haplotype diversity (Luna et al., 2012; Vianna et al., 2006) 
and microsatellite diversity (Luna et al., 2021; Luna, 2013). Despite 
current trends of population reduction, the Amazonian manatee bears 
greater genetic diversity and lower population structure across its dis-
tribution (Luna et al., 2021; Satizábal et al., 2012; Vianna et al., 2006). 
Despite separation of these species around 1.3 million years ago (de 
Souza et al., 2021), hybridization has been reported in their sympatric 
region (Garcia-Rodriguez et al., 1998; Vianna et al., 2006), however its 
degree in current populations is under discussion (Luna et al., 2021; 
Vilaça et al., 2019). Overall, functional genetic diversity has been poorly 
investigated and this may be the next step to further understand the 
adaptive potential and best maintain both species. 

To our knowledge there is a single report on manatee MHC (Vela and 
González, 1999), however we could not find any peer-reviewed publi-
cations with such data. Information on the variability of class II MHC 
genes such as the DQB locus can also provide further knowledge on the 
vulnerability of the manatee populations and serve as a tool for 
decision-making during animal release in the wild. This paper aims to 

characterize DQB polymorphism in two species of manatees and provide 
the first attempt to address Slade’s (1992) second prediction by 
comparing the diversity of two fully aquatic mammalian clades (Sirenia 
and Cetacea) to Pinnipeda, compiling the largest MHC sequence dataset 
from marine and aquatic mammals to date. 

2. Methods 

2.1. Sirenia DQB diversity characterization 

2.1.1. Sample collection and DNA extraction 
Samples were obtained from 24 T. inunguis from Brazil, Pará State, 

and 40 T. manatus, including individuals from Brazil (n = 26), Belize (n 
= 4) and Florida (n = 10) (Fig. 1). Blood samples were preserved in 
EDTA solution and frozen until DNA extraction. DNA was extracted 
using DNeasy Blood & Tissue Kit (Qiagen), following the manufacturer’s 
protocol. All procedures were approved by ethics committee and sam-
ples were exported under CITES permit (see Ethics Statement). 

2.1.2. DQB genotyping and analysis 
Primers were designed using NCBI/Primer-Blast to amplify the sec-

ond exon of the DQB gene from the West Indian manatee genome as-
sembly (Gene ID: 101345015). The designed primer pair TmaDQBF 5′- 
TCACCGCAGAGGATTTCGTG-3′ and TmaDQBR 5′-CGACTCCTGGA-
GACTCAACC-3′ anneals in the beginning of exon 2 and inside intron 2, 
resulting in a 344 bp amplicon. Primer-Blast using this primer set results 
in three hits in the African elephant genome, all three predicted DQB 
genes or pseudogenes. Theoretical PCR products in the elephant genome 
range from 341 to 344 bp and primers have only one to three mis-
matches to those DQB sequences, suggesting the primer set indeed locate 
to conserved portions of DQB from Tethytheria (clade including Sirenia 
and Proboscidea). Due to lack of T. inunguis genomic resources, the 
amplification of DQB in this species was determined experimentally. The 
characterization of more alleles in T. inunguis compared to T. manatus 
(see below in results) suggests the interspecific primers used are indeed 
able to characterize DQB diversity in both species. DQB was amplified 
using GoTaq PCR Kit (Promega), following manufacturer’s protocol, 
using 0.1 μM of each primer. DNA concentration was optimized indi-
vidually for each sample. The cycling protocol consisted of initial 
denaturation at 94 ◦C for 5 min, followed by 35 cycles of denaturing at 
94 ◦C for 30s, annealing at 60 ◦C for 30 s and extension at 72 ◦C for 40 s, 

Fig. 1. Map of locations where manatees were sampled in this study. Positions 
are marked from the reference locality animals were rescued, since samples 
were not georeferenced during collection. Only samples with known locality (e. 
g., beach, river or city) are shown; for some samples, only the State from which 
the sample was collected was annotated, and therefore are not shown in this 
map. Sample locations are noted for both manatee species and may represent 
one or more samples. 
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followed by a final extension at 72 ◦C for 2 min. DQB products were 
confirmed in a 1% agarose gel. Samples were genotyped by a combi-
nation of sequencing cloned PCR products, next generation sequencing 
(NGS) and phasing diploid genotypes. Sequences were considered true 
alleles if scored by at least two of the three aforementioned methods, 
occurring in more than one sample, and compatible to the sample’s 
diploid Sanger phase (i.e. all polymorphic peaks in the sample’s Sanger 
sequence are explained by the combination of the genotyped alleles). 
Detailed methods for the sequencing and genotyping are provided in the 
Supplementary Material 2. 

Polymorphism summary statistics were assessed in DNAsp v.6. To 
assess evidence of selection, the rates of synonymous and non- 
synonymous substitutions were calculated (dN/dS) for the entire exon 
2, the peptide binding sites (PBS, defined by (Brown et al., 1993) and 
(Fremont et al., 1998)), and the non-PBS positions, using the Li-Wu-Luo 
method, implemented in the software MEGA X (Kumar et al., 2018). 
Z-test was used to test for the significance of dN/dS ratios, also in MEGA 
X. 

For the site-by-site selection test, we used several methods imple-
mented within the Datamonkey server (i.e. SLAC, FUBAR, MEME and 
FEL). Because recombination may lead to false positive results in 
likelihood-ratio tests (Anisimova et al., 2003), evidence for recombi-
nation between DQB alleles was assessed using the GARD algorithm 
from the Datamonkey website (Weaver et al., 2018), and selection tests 
were performed using all Trichechus alleles as one (no recombination) or 
three partitions (based on recombination breakpoints evidenced by 
GARD). Given that MHC alleles undergo recombination and gene 
conversion-like events, we used 1000 bootstrap iterations in Splitstree 
(Huson and Bryant, 2006) to better represent the evolutionary rela-
tionship between sequences. 

The p-distance between allele sequences from each genotyped indi-
vidual were calculated in MEGA X and compared with the p-distance 
expected from all allele pairwise combinations (i.e. all possible geno-
types given the alleles found in each species); since the sample’s geno-
type would be a subset of all pairwise combinations, no statistic test was 
performed. 

2.2. Revisiting Slade’s (1992) second prediction 

We searched scientific repositories to compile an extensive list of 
class II diversity reports including many Cetacea and Pinnipeda species. 
The full list of consulted papers is given in Supplementary Material 1. In 
this analysis, we included all reports on DQB diversity that deposited 
sequences in public repositories. Because of the variety of reported 
measures of diversity and therefore no uniformity across reports, we 
compared reported number of alleles and used sequences to calculate 
molecular diversity across the three aquatic mammal clades, defined as 
Cetacea, Pinnipeda and Sirenia. For allele number, only reports using 
sample sizes greater than ten were analyzed. Correlation between 
sample size and number of alleles was assessed by Spearman correlation 
in the whole dataset and inside each clade. Differences in allele number 
between mammals from different habitats was assessed by Wilcoxon- 
Mann-Whitney test (comparisons were made between exclusively ma-
rine mammals and aquatic mammals that inhabits freshwater, exclu-
sively or not). 

Sequences were downloaded to create datasets of allelic variants 
among clades and subclades (i.e., Mysticeti, Odontoceti, Phocidae, 
Otariidae, Odobenidae and Trichechidae). Because of varying amplifi-
cation methods, sequences were of different sizes, sometimes covering 
distinct portions of the DQB exon 2. Most Cetacea reports use Tsuji et al. 
(1992) primers to amplify 172 bp of the DQB exon 2 (see Murray et al., 
1995); some reports of Pinnipeda also use the same amplification 
methods, but others use distinct primer pairs. Since the size (and hence 
the number of predicted PBS) of the sequence may impact the molecular 
diversity, we analyzed sequences encompassing two regions: 1) the 
whole exon 2 region, including all alleles irrespective of size and2) 172 

bp of the exon 2, trimming all longer sequences and excluding sequences 
smaller than 172 bp. 

Identical sequences inside each dataset were removed using Fasta 
Tools Unique Sequences (in https://www.ncbi.nlm.nih.gov/CBBresear 
ch/Spouge/html_ncbi/html/fasta/uniqueseq.cgi) and double checked 
by pairwise distance computation in MEGA version X (Kumar et al., 
2018); alleles with “0” distance but non-overlapping sequences were 
kept. Using MEGA X, we calculated pairwise dS and dN distances and 
amino acid p-distances across alleles. dN/dS ratio was calculated as 
described above, removing “not computed (n/c)” values from the 
analysis. Amino acid distances were compared using Kruskall-Wallis 
rank sum test, using pairwise Wilcoxon rank sum test to check differ-
ences in protein diversity among clades. 

Statistical tests and graphs were made in RStudio; scripts and data-
sets are provided on Figshare (Sá et al., 2021). Figures were edited in 
Adobe Photoshop v22.1. To test whether Pinnipeda DQB evolved under 
intensified/relaxed selection compared to other aquatic mammals, we 
used RELAX (Wertheim et al., 2015), implemented in Hyphy (Kosa-
kovsky Pond et al., 2020), using Pinnipeda DQB as the test dataset and 
other aquatic mammals DQB as reference dataset. Results from the 172 
bp dataset did not change the main conclusions of this study, therefore 
only the results from the more comprehensive dataset were reported. 

3. Results 

3.1. Sirenia DQB diversity 

A total of 12 alleles were identified in T. inunguis and 6 alleles in 
T. manatus. Four alleles where shared between both species, resulting 14 
uniquely identified Sirenian alleles. There was no evidence of deletions, 
insertions or stop codons in the analyzed sequences (Fig. 2A). Most 
manatee samples possessed one or two distinct alleles, whereas only one 
T. inunguis sample had evidence of amplification of two additional al-
leles for a total of four DQB alleles. All sequences scored high similarity 
to the DQB sequence from the T. manatus genome (GCF_000243295.1), 
although no allele was identical to the genome DQB allele (which may be 
an artifact of assembly, Gene ID: 101345015). The amplification assay 
resulted in a fragment of 304 bp (without primers), including 259 bp of 
the DQB exon 2 (86 codons). In the intron 2 sequence, we were able to 
find two SNPs (alignment position #289 G > C and #301 T > G). 

Polymorphism statistics are summarized in Table 1. Overall, 
T. inunguis had higher genetic diversity compared to T. manatus, 
including greater number of alleles, haplotype, and nucleotide di-
versities (Table 1). Thirty-four of 259 (13,12%) exon 2 nucleotides were 
variable among all manatee alleles, whereas 21 of 86 (24,41%) amino 
acid sites varied among alleles. Considering the position in the protein, 
14 of 22 (63,63%) peptide biding sites (PBS) position, according to 
Fremont et al., (1998), and 13 of 23 PBS (56,52%) positions, according 
to Brown et al. (1993), varied among all manatee alleles. Mutations on 
the exon 2 of manatee DQB largely resulted in amino acid substitutions. 
Ratios of dN/dS showed evidence that the DQB loci is evolving under 
positive selective pressure, particularly in the PBS (Table 2). 

Different selection algorithms revealed evidence for distinct sites 
under positive selection (Table S1, supplementary material 3). All sites 
subjected to positive/diversifying selection were PBS, and the residues 
with overall agreement of multiple positive selection tests were 11, 13, 
26, 71 and 74 (Table S1). The only residue with evidence of negative 
selection was the position 12 residue (Table S1). 

Allele frequencies are summarized in Table S2 (Supplementary ma-
terial 3). The allele with the highest frequency in T. inunguis was 
TrinDQB*01 and *08, other alleles varied from 4% to 14%. Overall, 
T. manatus had four alleles with high frequency, however their fre-
quency varied between populations: alleles TrmaDQB*01, *05 and *06 
were absent in animals from Belize and Florida; allele TrmaDQB*04 was 
absent in Brazilian animals. 

DQB allele phylogenetic networks revealed trans-species 
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polymorphisms between both manatee species, including four shared 
alleles (Fig. 2B). The relationship between alleles suggests the occur-
rence of recombination and/or gene conversion-like events, also 

suggested by the GARD algorithm (Table S1). Two clusters were formed 
in the network, the first comprised by alleles TrinDQB*03, *07, *09, *10, 
*12 and TrmaDQB*02, *03,*04, *05, while the other cluster comprised 

Fig. 2. DQB allele diversity in manatees. A) Alignment of DQB exon 2 predicted protein sequence. Dots represents identity with the first sequence. Above the 
alignment, “+” indicates peptide binding sites (PBS), according to Fremont et al. (1998); “x” indicates PBS, according to Brown et al. (1993); number refer to the 
residues of the DQB molecule. B) Phylogenetic network showing the relationship of manatee DQB exon 2 alleles. C) Distribution of amino acid p-distance between 
alleles in manatee genotypes. “All” refers to the p-distance between all possible pairwise combinations from the alleles in each species, including homozygotes. 
“Used” refers to the actual combination of alleles in each sampled population. BZ, Belize; BR, Brazil; FL, Florida. Trma, Trichechus manatus (in red); Trin, T. inunguis 
(in blue). 

Table 1 
Polymorphism statistics in two species of manatee, including subpopulations.  

Population N Size (bp) Na S Hd ±SD π k θw*±SD 

Trichechus sp. 64 259 14 34 0.874±
0.014 

0.04110 10.644 0.2413 ± 0.00414 

T. inunguis 24 259 12 34 0.912±
0.016 

0.04968 12.868 0.02931 ± 0.00503 

T. manatus 40 259 6 23 0.762 ± 0.023 0.03149 8.155 0.01793 ± 0.00374 
Florida 10 259 3 16 0.542 ± 0.076 0.02374 6.147 0.01741 ± 0.00435 
Belize 4 259 2 16 0.571 ± 0.094 0.03530 9.143 0.02383 ± 0.00596 
Brazil 26 259 5 23 0.655 ± 0.041 0.02720 7.044 0.01965 ± 0.00410 

N, number of samples; S, Polymorphic (segregating) sites; Na, number of alleles; Hd, Haplotype diversity; π, nucleotide diversity; k, average number of nucleotide 
differences; θw, Theta (per site) from S ± standard deviation of theta (free recombination). 
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of the sequences TrinDQB**02, *04, *05, *06, *08, *11, and 
Trma*DQB*01 (Fig. 2B); the alleles TrinDQB*01 and TrmaDQB*06 lied 
in between both clusters. Nonetheless, the clusters were highly related, 
with little distance. 

Amazonian manatee genotypes were enriched in the upper quartiles 
of the amino acid p-distance between all possible combination of alleles 
(Fig. 2C); for this comparison, the T. inunguis sample with four alleles 
was removed. On the other hand, T. manatus genotype p-distance dis-
tribution more closely resembled the expected from all possible com-
binations of alleles (Fig. 2C). 

3.2. Aquatic mammal DQB diversity 

We reviewed a total of 67 reports (Supplementary Material 1), 
including marine mammal MHC studies on class I and class II loci; only 
those with DQB diversity were further analyzed. Cetacea is the most 
studied group to date, and in this group Odontoceti species were the 
most studied. Fewer reports are found from Pinnipeda species, and 
Odobenidae only has a single report. 

Overall, we were able to compile 170 and 38 unique DQB alleles from 

Cetacea and Pinnipeda, respectively. Number of alleles in Cetacea 
ranged from one, in Phocoena sinus (Munguia-Vega et al., 2007) and 
Monodon monoceros (Murray et al., 1995), to twenty two in Balaenoptera 
musculus (Moreno-Santillán et al., 2016). In Pinnipeda this number 
ranged from two, in Phocarctos hookeri (Lento et al., 2003; Osborne et al., 
2013) and Mirounga angustirostris (Hoelzel et al., 1999; Weber et al., 
2004), to eight, in Mirounga leonina (Hoelzel et al., 1999) and Zalophus 
californianus (Bowen et al., 2002). Sample size did not correlate to 
number of alleles using the whole dataset (Spearman correlation R =
0.3, P = 0.09; Fig. 3A), but this correlation was positive in Cetacea 
studies (R = 0.6, P = 0.007; Fig. 3B); removal of the outlier Phocidae 
study did not result in significant correlation for the whole dataset or 
Pinnipeda (data not shown). Overall, Pinnipeda studies reported lower 
mean number of alleles (Fig. 3C). Studied aquatic mammals were cate-
gorized across five IUCN red list categories, whereas DQB diversity did 
not seem to be greater in less threatened species (however the small 
number of reports in some categories precluded statistical comparisons; 
Fig. S1, Supplementary Material 3). Aquatic mammals that inhabit 
freshwater had an overall greater number of alleles when compared to 
exclusively marine mammals (mean allele number 9 ± 3.07 vs 5.45 ±

Table 2 
Rates of non-synonymous to synonymous substitutions (dN/dS) and nucleotide divergence for the second exon of MHC DQB locus in aquatic mammals.  

Clade Na Total (267 bp) PBS (90 bp) Non-PBS (177 pb) 

dN ± SE dS ± SE dN/dS dN ± SE dS ± SE dN/dS dN ± SE dS ± SE dN/dS 

Sirenia DQB 14 0.069 ± 0.017 0.017 ± 0.012 4.05* 0.186 ± 0.048 0.032 ± 0.030 5.81* 0.009 ± 0.006 0.013 ± 0.014 0.69 
TrmaDQB 6 0.056 ± 0.016 0.021 ± 0.016 2.66* 0.152 ± 0.044 0.040 ± 0.043 3.80* 0.005 ± 0.006 0.016 ± 0.016 0.31 
TrinDQB 12 0.071 ± 0.018 0.016 ± 0.011 4.43* 0.190 ± 0.049 0.027 ± 0.022 7.03* 0.011 ± 0.006 0.013 ± 0.013 0.84 
Cetacea DQB 170 0.101 ± 0.023 0.046 ± 0.016 2.19* 0.286 ± 0.076 0.107 ± 0.061 2.67* 0.029 ± 0.010 0.037 ± 0.017 0.78 
Pinnipeda DQB 38 0.063 ± 0.020 0.058 ± 0.018 1.08 0.203 ± 0.074 0.173 ± 0.065 1.17 0.018 ± 0.005 0.035 ± 0.012 0.51 

TrmaDQB, Trichechus manatus; TrinDQB, T. inunguis; Na, number of alleles; SE, standard error; PBS according to Brown et al. (1993) and Fremont et al. (1998); *Z-test 
P < 0,05. 

Fig. 3. DQB allele diversity across clades and subclades of aquatic mammals. A) Correlation between sample size and number of DQB alleles in studies on DQB 
diversity using the whole dataset and B) using Cetacea (blue) and Pinnipeda (green) only; shaded in gray is the 95% confidence interval. C) Number of DQB alleles. 
D) Rates of synonymous (dS) and non-synonymous (dN) substitutions. E) Amino acid pairwise p-distances. 
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5.43, Wilcoxon-Mann-Whitney p = 0.0034, Fig. S2, Supplementary 
Material 3). 

Cetacea and Sirenia DQB alleles showed higher dN rates compared to 
dS (Fig. 3D). In contrast, Pinnipeda dS and dN were similar across all 
subclades, including the highest rates of synonymous substitutions 
(Fig. 3D). The dN/dS ratios in the Sirenia and Cetacea dataset were 
positive and significant for the whole exon 2 and PBS positions (Table 2), 
suggesting positive selection. In contrast, Pinnipeda dataset assumed 
ratios close to 1, including in PBS (Table 2). RELAX test showed a 
relaxation/intensification parameter K = 0.85, suggestive of relaxation 
in selection across Pinnipeda alleles, however it was not significant (p =
0.35). 

We found a total of 161 unique Cetacea DQB predicted amino acid 
sequences, including 51/89 polymorphic positions (57.3%). Across 34 
Pinnipeda unique DQB amino acid sequences, only 38/89 sites were 
polymorphic (42.7%). Polymorphic positions across marine mammal 
DQB protein sequences were similar (Fig. S3, supplementary material 
3). 

P-distance of predicted amino acid sequence of DQB alleles had 
similar distribution across marine mammals (Fig. 3E). Cetacea had the 
highest p-distance across DQB alleles compared to other marine 
mammal clades (P < 0.01), whereas Sirenia and Pinnipeda had similar 
values (P = 0.35; Table S3, Supplementary material 3). Most subclade 
pairwise comparisons showed significant differences in p-distance dis-
tribution, except between all Pinnipeda subclades, and between Tri-
chechidae and Odobenidae alleles (Table S4, Supplementary material 
3). 

4. Discussion 

4.1. MHC diversity in manatees 

To our knowledge, we have showed here the first results on Sirenia 
MHC DQB diversity, including samples from two species. Despite smaller 
and more restricted geographic sampling, Amazonian manatees 
possessed greater number of alleles, haplotype and nucleotide diversity 
compared to West Indian manatees. Due to a dearth of sample, com-
parisons between manatee populations should be cautionary. However, 
the greater genetic diversity found in T. inunguis DQB agree with results 
from other nuclear and mitochondrial markers (Hernández Martínez 
et al., 2013; Hunter et al., 2012; Luna et al., 2021; Luna, 2013; Nourisson 
et al., 2011; Satizábal et al., 2012; Vianna et al., 2006). Despite the low 
genetic diversity in T. manatus, our results suggest the maintenance of 
adaptive/functional diversity. 

Evidence of overall positive selection in manatee exon 2 of an MHC 
class II gene is highly concordant with reports from other vertebrates, 
including marine mammals (Cammen et al., 2015; Moreno-Santillán 
et al., 2016; Sonsthagen et al., 2014; Zhang et al., 2016). The prevalence 
of non-synonymous substitutions suggests a historical pressure for the 
maintenance of divergent DQB proteins in the population by means of 
balancing selection. Interestingly, T. inunguis individuals seem to retain 
more divergent alleles (Fig. 2C), which might corroborate with the 
divergent allele hypothesis (Wakeland et al., 1990). This hypothesis 
postulates that populations and individuals with divergent alleles will 
have increased fitness because they can present a broader arrange of 
antigens. Further investigations are needed to directly test this hy-
pothesis in manatee populations. 

The lack of stop codons and maintenance of conserved domains on 
all alleles of both species suggests they are likely expressed DQB genes. 
The Florida manatee (T. manatus latirostris) genome possesses four DQB 
loci, located in two scaffolds, three of which are pseudogenes (Sá et al., 
2019). Among pseudogenes, only one had stop codons in the exon 2. 
Other pseudogenes, despite not having stop codons in the exon 2, have 
several mutations in this exon (including in non-PBS residues), resulting 
in long branches in phylogenetic analysis when compared to functional 
gene sequences (data not shown), different from the alleles presented 

here. The primers designed in this study have only two Primer-BLAST 
hits in the Florida manatee genome (the functional gene and one pseu-
dogene). The primer pair had three to four mismatches to the pseudo-
gene and the expected PCR product size is 8-bp smaller than the 
sequences amplified in this study. In addition, the presence of four al-
leles in a single individual suggests that at least some haplotypes have 
duplicated loci. Therefore, we believe alleles are from functional DQB 
loci and not from pseudogenes, and copy number variationfundin may 
increase the number of expressed genes in manatees. 

The occurrence of four identical alleles in T. manatus and T. inunguis 
samples suggests trans-species polymorphism. This phenomenon is 
believed to be a result of old allelic lineages maintained by balancing 
selection in ancestral species prior and throughout the speciation 
divergence (Klein et al., 2007; Těšický and Vinkler, 2015). Among the 
four alleles shared by both manatee species, all occur in Brazilian West 
Indian manatees, while Florida manatees lack two of them. Since the 
species may hybridize in northern Brazil (Garcia-Rodriguez et al., 1998; 
Vianna et al., 2006), it is difficult to differentiate between trans-species 
polymorphism and genetic introgression. 

Despite the identification of later generation hybrids between both 
manatee species in French Guiana (Vilaça et al., 2019), Luna et al. 
(2021) did not find evidence of a hybrid swarm in this region using a 
robust dataset and well-suited microsatellite markers (Lima et al., 2019; 
Vilaça et al., 2019). Nonetheless, irrespective of the degree that mana-
tees undergo hybridization in the sympatric region, historical (and even 
rare) events of past hybridizations may generate islands of introgressed 
genetic diversity in species’ genomes (Gokcumen, 2020; Martin and 
Jiggins, 2017), and the MHC loci, evolving under balancing selection, 
may be particularly prone to such phenomenon (Dudek et al., 2019; 
Hedrick, 2013) and has been reported in other vertebrates (Angelone 
et al., 2018; Dudek et al., 2019; Grossen et al., 2014; Sagonas et al., 
2019; Wegner and Eizaguirre, 2012). 

Possible explanations for increased DQB diversity in Brazil compared 
to Florida T. manatus may be due to: differences in sampling effort; 
historical population sizes and demography (correlating to the overall 
reduced genetic diversity found in Florida possibly due to founding ef-
fect (Garcia-Rodriguez et al., 1998; Tucker et al., 2012; Vianna et al., 
2006)); and historical introgression contributing to diversity (supported 
by the fact that two out of three unique alleles to Brazilian T. manatus are 
identical to T. inunguis alleles, Table S2, Supplementary Material 3). 
Current understanding of manatee evolution places the ancestor of Tri-
chechus on the Amazon basin (de Souza et al., 2021). Therefore, 
increased diversity found in T. inunguis may be due to larger long-term 
effective population size of this species, as speciation and migration of 
T. manatus may have imposed bottlenecks that resulted in loss of genetic 
diversity from ancestral populations. 

Future studies are needed to understand the evolutionary history of 
MHC genes from manatees, including greater sampling from all three 
manatee species, including other T. manatus populations (e.g. from other 
Central and South American countries, the Caribbean islands, Florida), 
and from the sympatric region. Noteworthy, sequencing of multiple sites 
(i.e. other exons, introns and/or linked loci) of shared alleles may be 
needed to differentiate trans-species polymorphism from potential 
introgression. 

4.2. Aquatic mammal DQB evolution 

Manatee number of alleles lie within the distribution of reported 
marine mammals. The number of alleles found in T. inunguis is similar to 
those reported by Cammen et al. (2015) and Pagán et al. (2018) for 
Tursiops truncatus, despite the smaller sample size in the present study. 
West Indian manatees have a greater DQB diversity than Balaenoptera 
physalus and Sousa chinensis, two marine mammal species with similar 
sampling size to our data (Nigenda-Morales et al., 2008; Zhang et al., 
2016). As a matter of fact, only three Cetacea species had more than 
eight DQB alleles (Arbanasić et al., 2014; Cammen et al., 2015; Du et al., 
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2010; Moreno-Santillán et al., 2016; Pagán et al., 2018; Xu et al., 2007), 
and in some cases despite great sampling efforts (Hayashi et al., 2006; 
Heimeier et al., 2018; Murray et al., 1999); eight alleles was the upper 
limit for Pinnipeda diversity (Bowen et al., 2002; Hoelzel et al., 1999). 
Population size and historical demographic fluctuations are likely to 
impact the number of alleles found, however aquatic mammals 
currently under lower levels of threat does not seem to possess more 
alleles than more threatened species (Fig. S1, Supplementary Material 
3). 

Comparisons between ours and others’ studies should take into 
consideration the amplification methods used. Most studies report only 
172bp of Cetacea DQB alleles or even smaller fragments from most 
Pinnipeda, potentially leading to the DQB diversity being under-
estimated. In fact, several amplification assays used for marine mam-
mals have one or both primers annealing in predicted PBS sites (Fig. S4, 
Supplementary Material 3) which are the most polymorphic positions of 
MHC genes and may have key differences at the 3′of the primer and 
could result in failure of some allele amplification. Regarding our 
characterization of manatee DQB diversity, the lack of other primer sets 
precludes a definite conclusion regarding DQB allele number or copy 
number variation; however, we believe this has little effect on the main 
conclusions drawn from the comparisons to other marine mammals, as 
our main analysis is based on molecular evolution statistics (such as dN/ 
dS and p-distance), less sensible to incomplete polymorphism charac-
terization. Despite these shortcomings, our results point to a more 
complex scenario of marine mammal MHC evolution than suggested 
previously. 

Slade’s (1992) hypothesis – that marine mammals experience 
reduced pathogen pressure on aquatic environments which results in 
reduced MHC diversity – was initially supported by several reports on 
low genetic diversity in Cetacea and Pinnipeda (e.g. (Murray and White, 
1998; Slade, 1992; Trowsdale et al., 1989; Weber et al., 2004)). Addi-
tionally (Villanueva-Noriega et al., 2013), provided the first direct test 
of Slade’s (1992) first prediction by comparing DQB diversity of 
terrestrial mammals and cetaceans, suggesting weaker balancing selec-
tion on the later. As suggested by Slade (1992), it would be expected that 
marine mammals that are not fully aquatic would be subject to greater 
pressure from pathogens from terrestrial environments and other 
terrestrial mammals. Also, Pinnipeda species with high density colonies 
would also provide a well-suited condition for infectious diseases to 
spread. 

Contrary to expectations, substitution rates point to a distinct 
evolutionary history in Pinnipeda DQB, with alleles showing greater 
synonymous substitutions than expected. The accumulation of synony-
mous substitutions may reflect a relaxed selective pressure in the locus, 
as suggested by the close to unity values found in the exon 2 dN/dS 
ratios. Relaxation/intensification index K showed a smaller then 1 value 
for Pinnipeda DQB, compatible with relaxation in the selection in this 
branch, although results were not significant, possibly due to the small 
number of codons tested, especially in the Pinnipeda dataset. This 
contradicts Slade’s (1992) prediction that Pinnipeda would be subject to 
greater selective pressure than other marine mammals due to greater 
exposure to terrestrial mammals’ pathogens. 

Few studies reported substitution rates in Pinnipeda DQB, including 
small rates of non-synonymous substitutions in Odobenus rosmarus 
(Sonsthagen et al., 2014), but not in Neophoca cinerea (Lau et al., 2015). 
Sirenia and Cetacea DQB have overall greater diversity, and sub-
stitutions rates that better resemble those found in classic MHC genes 
from terrestrial mammals. Sirenia DQB had the highest dN/dS ratio, but 
this may be a consequence of the reduced number of sequences and taxa 
included in this group. Interestingly, the accumulation of synonymous 
substitution in Pinnipeda does not have a pronounced effect on amino 
acid diversity, since we found similar distribution of amino acid p-dis-
tance comparing the three clades. The greater values observed in Ceta-
cea p-distances may stem from the greater number of taxa and sequences 
included in the analysis. 

The characteristics found here for Pinnipeda DQB do not seem to 
reflect the overall evolution of Carnivora DQB, as high number of alleles 
and/or high ratio of dN/dS has been found in terrestrial carnivores, such 
as dogs (Wagner et al., 1998), wolves (Seddon and Ellegren, 2002), 
Japanese black bears (Yasukochi et al., 2012), brown bears (Kuduk 
et al., 2012), and giant panda (Chen et al., 2009). DQB from carnivore 
lineages closer to Pinnipeda are less studied. To our knowledge, only two 
studies described (low) DQB diversity in the sea otter and European 
badgers (Bowen et al., 2006; Sin et al., 2012), but small sample size (≤7 
individuals) prevents to draw meaningful conclusions based on their 
DQB polymorphism. Therefore, Pinnipeda DQB may be evolving under 
relaxed balancing selection since its split from other carnivore lineages. 
Interestingly, De Assunção-Franco et al. (2012) reported association of 
DQB genotypes to mortality in grey seals, despite low allele number in 
the species. Therefore, DQB may still impact fitness, despite evolving 
under weaker selective pressure, which helps in explaining the main-
tenance of diverse amino acid composition found in our results. This 
association may also be due to linked loci in the MHC region, as DRB has 
also been associated with fitness and disease in Pinnipeda (Aceve-
do-Whitehouse et al., 2018; Bowen et al., 2005; Lenz et al., 2013), and 
shows overall “more classical nature” compared to DQB due to greater 
polymorphism (Bowen et al., 2004; Lenz et al., 2013). 

These results may reflect a distinct evolution of Pinnipeda DQB, 
despite being considered a class II MHC classical gene. Several verte-
brate lineages have undergone distinct evolutionary paths, including 
loss of function of DQ and DP genes and expansion of DR in felines 
(Yuhki et al., 2003), loss of DR and expansion of DP in mole rats (Nizetic 
et al., 1987), loss of class II in Gadiformes (Malmstrøm et al., 2016; Star 
et al., 2011), pipefishes (Haase et al., 2013; Small et al., 2016) and 
Lophioidei (Dubin et al., 2019), probable loss of functional DP in 
Cetacea, Pinnipeda and in the tenrec, and loss of functional DQ in 
Afrosoricida (Sá et al., 2019). Differences in evolutionary trajectories 
across clades makes it difficult to address ecoevolutionary questions 
such as the evolution of MHC in aquatic mammals. 

The MHC evolution shows great plasticity in accommodating distinct 
genomic background related to a species ecoevolutionary trajectory, 
probably because there is some degree of redundancy in the function of 
classical genes. Despite this, aquatic mammals immunogenetic studies 
have largely focused on characterizing DQB diversity, and therefore 
caution is needed when interpreting previous reports and our results as 
representative of the evolution of the MHC as a whole. Not only DQB 
itself does not represent the whole DQ molecule diversity (of which 
binding groove includes polymorphic residues from both DQB and DQA 
molecules), but also other closely linked polymorphic MHC loci may 
play a role in disease resistance, such as DR, DP, in addition to classical 
class I molecules. Therefore, a deeper understanding of aquatic mammal 
MHC evolution will come with greater sampling efforts and population 
level characterization of diversity of additional loci, such as other clas-
sical class II and class I genes. As for now, the reduced number of studies 
using other loci in all three lineages makes it difficult to perform similar 
analysis as the one presented here for DQB. Sirenia would benefit from 
greater efforts in characterizing its MHC diversity and function, not only 
in manatees but also in dugongs. As for today, little is known regarding 
MHC diversity and function in general in Afrotherians, with only a few 
reports on elephants and mammoth DQA polymorphism (Archie et al., 
2010; Pečnerová et al., 2016). Therefore, any immunogenetic compar-
ison among aquatic mammals will bias analysis if based on the 
assumption that the immune response in these three clades follow the 
same rules. 

Noteworthy, Slade’s (1992) hypothesis did not address any possible 
differences between freshwater and marine pathogen environmental 
pressures. Animals inhabiting freshwater bodies may be subject to 
distinct evolutionary pressures, when compared to marine environ-
ments, due to distinct microbial diversity, diet, and seasonality (Tee 
et al., 2021; Wilhelm and Matteson, 2008). Our results points to a 
greater number of DQB alleles in aquatic mammals inhabiting 
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freshwater compared to exclusively marine mammals. However, two 
species (Neophocaena phocaenoides and T. truncatus) are overrepresented 
in the freshwater inhabiting group in our analysis. Therefore, this result 
is preliminary and should be interpreted with caution. Antillean man-
atees may provide a suitable model for understanding these differences, 
as recent evidence suggests distinct ecotypes of Antillean manatees 
comparing riverine and coastal marine populations (Castel-
blanco-Martínez et al., 2021). In fact, Slade’s hypothesis also did not 
address any possible differences between coastal and marine habitats, as 
coastal environments may be more subject to input from terrestrial 
habitats due to run offs. Future research is needed to elucidate how and 
whether possible differences between the diverse environments aquatic 
mammals live in influences on their MHC evolution. 

Taken together, our results point to the maintenance of functional/ 
adaptive genetic diversity in both species of manatees in the Americas, 
however reduced genetic diversity in T. manatus is still of concern. 
Balancing selection likely shaped the diversity of manatees, with several 
positively selected codons. Allele composition suggests trans-species 
polymorphism between both species but cannot rule out sharing of al-
leles through introgression. Fully aquatic mammals do not have lower 
DQB diversity compared to Pinnipeda, which contradicts Slade’s (1992) 
second prediction. However, more studies from Sirenia and Pinnipeda 
DQB, and other classical class I and II loci from all aquatic mammals are 
needed to further elucidate this prediction. In addition, the scarcity of 
Pinnipeda reports hinders testing Slade’s (1992) third prediction, 
regarding distinct pressure on Pinnipeda species that spend more time 
ashore and in colonies closer to terrestrial mammal populations. Based 
on the data presented here, the hypothesis that aquatic mammals MHC 
are under weaker selective pressure is not supported and point to the 
need to refine other possible ecoevolutionary processes responsible for 
the trends observed in Cetacea and Pinnipeda DQB repertoire. 
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