ORIGINAL PAPER

Evolutionarily conserved and divergent regions of the Autoimmune Regulator (*Aire*) gene: a comparative analysis

Mark Saltis • Michael F. Criscitiello • Yuko Ohta • Matthew Keefe • Nikolaus S. Trede • Ryo Goitsuka • Martin F. Flajnik

Received: 17 August 2007 / Accepted: 5 December 2007 © Springer-Verlag 2007

Abstract During T cell differentiation, medullary thymic epithelial cells (MTEC) expose developing T cells to tissuespecific antigens. MTEC expression of such self-antigens requires the transcription factor autoimmune regulator (Aire). In mammals, defects in *aire* result in multi-tissue, T cell-mediated autoimmunity. Because the T cell receptor repertoire is randomly generated and extremely diverse in all jawed vertebrates, it is likely that an *aire*-dependent T cell tolerance mechanism also exists in nonmammalian vertebrates. We have isolated *aire* genes from animals in all gnathostome classes except the cartilaginous fish by a combination of molecular techniques and scanning of

Electronic supplementary material The online version of this article (doi:10.1007/s00251-007-0268-9) contains supplementary material, which is available to authorized users.

M. Saltis · M. F. Criscitiello · Y. Ohta · M. F. Flajnik (⊠)
Department of Microbiology and Immunology,
University of Maryland, Baltimore,
660 West Redwood Street, HH324,
Baltimore, MD 21201, USA
e-mail: MFlajnik@som.umaryland.edu

N. S. TredeDivision of Pediatrics, The Huntsman Cancer Institute, University of Utah,2000 Circle of Hope,Salt Lake City, UT 84112, USA

M. Keefe Division of Molecular Biology, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA

R. Goitsuka Research Institute for Biological Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan expressed sequence tags and genomic databases. The deduced amino acid sequences of Aire were compared among mouse, human, opossum, chicken, Xenopus, zebrafish, and pufferfish. The first of two plant homeodomains (PHD) in human Aire and regions associated with nuclear and cytoplasmic localization are evolutionarily conserved, while other domains are either absent or divergent in one or more vertebrate classes. Furthermore, the second zincbinding domain previously named Aire PHD2 appears to have greater sequence similarity with Ring finger domains than to PHD domains. Point mutations in defective human aire genes are generally found in the most evolutionarily conserved regions of the protein. These findings reveal a very rapid evolution of certain regions of aire during vertebrate evolution and support the existence of an airedependent mechanism of T cell tolerance dating back at least to the emergence of bony fish.

Keywords Comparative immunology · Autoimmunity · Transcription factors · Autoimmune regulator

Introduction

As T cells develop in the thymus, they undergo a series of rearrangements of the T cell receptor variable (V) diversity (D), and joining (J) genes, resulting in the formation of a randomly generated antigen receptor repertoire with virtually unlimited diversity. In one form of negative selection in the thymus, medullary thymic epithelial cells (MTEC) expose developing T cells to a broad range of tissue-specific self-antigens (reviewed in Kyewski and Klein 2006). The expression of many of these antigens in the thymus requires the transcription factor autoimmune regulator (Aire; Anderson et al. 2005). In mammals, aire is expressed primarily in subsets of MTEC and thymic dendritic cells, although in very low amounts in other tissues as well (Heino et al. 1999). Aire upregulates expression of genes encoding tissue-specific self-antigens in MTEC (e.g. insulin, retinal antigens); T cell recognition of these self-antigens either results in deletion of autoreactive cells or in selection of tissue-specific T-regulatory cells that afford protection from destructive autoimmunity (Mathis and Benoist 2007). The mechanism of Aire transcriptional regulation is unknown, but tightly clustered genes in many regions of the genome seem to be activated under its influence suggesting a remarkable type of global control of gene expression (Johnnidis et al. 2005). Autoimmune polyglandular syndrome type 1 (APS1, also known as autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy) is the result of an autosomal recessive defect in aire (The Finnish-German APECED Consortium 1997), characterized by autoimmunity of endocrine organs, ectodermal dystrophies, insulin-dependent diabetes, gonadal atrophy, hypothyroidism, and/or pernicious anemia (Ahonen et al. 1990).

The functional regions described for human Aire (545 amino acids) include a deoxyribonucleic acid (DNA)-binding "human Sp100, Aire1, NucP41/P75, and *Drosophila* DEAF1 domain" (SAND), four LXXLL nuclear receptor boxes (NRB), a homogeneously staining region (HSR), two zinc finger-binding plant homeodomains (PHD1 and PHD2), a proline-rich region (PRR), a nuclear localization signal (NLS), and a C-terminal domain (CTD; Fig. 1). Nuclear matrix localization and nuclear transport are affected by mutations in the NRB and NLS, respectively (Ilmarinen et al. 2006; Pitkanen et al. 2001), while the HSR functions in homodimerization (Meloni et al. 2005). The SAND domain interacts with DNA in a nonspecific manner (Bottomley

et al. 2001). The Aire PHD1 domain is a Zn finger DNAbinding domain, possibly having ubiquitin ligase activity (Uchida et al. 2004).

As originally proposed by Kyewski and Klein, airedependent T cell-negative selection likely arose simultaneously with T/B cell-dependent adaptive immunity (Kyewski and Klein 2006), which originated when jawed vertebrates emerged some 500 million years ago. Therefore, we investigated the presence of aire orthologues in nonmammalian vertebrates. We isolated aire genes and complementary DNAs (cDNAs) from representatives of three nonmammalian vertebrate classes, an amphibian (Xenopus tropicalis), a bird (Gallus gallus), and a bony fish (Danio rerio). Partial expressed sequence tags (EST) or genomic sequences were also obtained from other species. We compared the deduced amino acid sequences and genomic organizations to published human and mouse Aire proteins. Through these comparative analyses, conserved and divergent domains and regions were revealed, and we found that some parts of aire evolved rapidly. Furthermore, we propose a reclassification of the domain previously described as Aire-PHD2 as a Ring-finger domain (Ring) based on phylogenetic analysis.

Materials and methods

Blast search EST and genomic sequences

All BLAST searches (www.ncbi.nlm.nih.gov) used the following ascension numbers and sequences: human Aire: CAA08759, NM_000383 and mouse: CAB36909, BC103511. Genomic or EST databases of each respective species were searched using BLASTx, tBLASTn, and tBLASTx with BLOSSUM 45 matrix. The following

Fig. 1 Aire domain composition in vertebrates. Comparative view of the Aire protein from human, mouse, opossum, zebrafish, frog, and chicken. The number of amino acid residues is shown at the *bottom*. The figure is to scale, and domain assignment is based on the deduced

amino acid sequence compared to human Aire-1 (see Fig. 2 for accession numbers). *Light* and *dark gray shades* represent unique domains. *Green*, NRB; *tan*, HSR; *yellow*, NLS; *blue*, SAND; *red*, PHD1 and PHD2; *orange*, CTD; *purple* PRR

sequences were obtained: frog (*X. tropicalis*): DT431622, DT431623, BX709411, CR566920, genomic scaffold 55 (www.genome.JGI-psf.org v4.1), Japanese pufferfish (*Takifugu rubripes*): genomic scaffold 73 (www.genome. JGI-psf.org, v4.0), green-spotted pufferfish (*Tetraodon nigroviridis*): chromosome 15 (www.genoscope.cns.fr), Turkey (*Meleagris gallopavo*): AY235111, opossum: ENSMODG00000011425 (www.ensembl.org).

Isolation of total RNA from frog, chicken, and zebrafish

Multiple organs were collected and pooled from 20 *X. tropicalis* and 20 *X. laevis* frogs approximately 2 months postmetamorphosis. Thymi from multiple adult zebrafish were obtained and pooled. Total ribonucleic acid (RNA) was prepared from the thymus of a single leghorn chicken (*G. gallus*) using TRI reagent (Sigma, MO) as per manufacturer's protocol and the Trizol Reagent (Invitrogen, CA) for all frog and zebrafish tissue samples.

cDNA preparation from total RNA

First-strand cDNA was made from 1 μ g total RNA using the SuperScript III First-Strand Synthesis System (Invitrogen) as per manufacturer's instructions.

RT-PCR amplification of *aire* from chicken, frog, and zebrafish

Chicken and frog (X. tropicalis) polymerase chain reaction (PCR) primers for amplification were designed from the HSR to PHD1 and from PHD1 to the CTD, based on homology to human aire based on tBLASTn comparison. The initial primers for zebrafish partial aire were designed according to short homologous sequences using tBLASTn comparison of the zebrafish genome aligned to human aire. Partial sequences were obtained with the SMART RACE cDNA Amplification Kit (Clonetech, CA); primers were then designed to amplify the full-length aire by reverse transcriptase (RT)-PCR. Frog primers used in this experiment are described in Supplemental Figs. 1 and 2: X. tropicalis primers: 5'-GCACTGAGATAGCTGTGGCCGT-3', 5'-GAGTTAATATGTTGCGATGGATG-3', 5'-CATC CATCGCAACATATTAACTC-3', 5'-ATGTTCTGA AATGCGCATTGCAG-3'; chicken primers: 5'-GCCGTG CCATGCTCTGGAATGC-3', 5'-TGCTGAAACTG CACCGCACGGAGATCG-3', 5'-CACGCATGAGCTG CATTGCCACGTC-3', 5'-CGACCACGAGGATGAG TGTGCAGTGT-3'; zebrafish primers: 5'-ATGTCTAAGG TGGAGAGTTTTGAAGAGT-3', 5'-GTGAACTTCATTGG AAATAGCCTTGGG-3'. All PCR reactions were performed using Taq polymerase (Invitrogen) and 1 µl cDNA with the following settings: 94°C/5 min, 35 cycles of 94°C/30 s, 50–60°C/30 s, 72°C/2–4 min. PCR products were cloned into the pCR2.1 vector, and sequences were verified by the University of Maryland, Baltimore Genomics Core facility. The following sequences were deposited in the National Center for Biotechnology Information database: *X. tropicalis*: EU004201, *X. laevis*: EU042188, EU042189: zebrafish; EU042187, and chicken: EU030003–EU030008.

Northern blot analysis and RT-PCR of *aire* transcripts in frog

Approximately 20 µg total RNA from thymus and other tissues was loaded on agarose gel and electrophoresed for 18 h at 20 V. The RNA was blotted onto a nitrocellulose membrane. A DNA probe (bold print, Supplemental Fig. 1) was PCR-labeled with ³²P-deoxycytidine triphosphate (Mertz and Rashtchian 1994) and hybridized under high stringency conditions as previously described (Bartl et al. 1997). The blot was exposed to film for 3 weeks. *aire* transcripts were detected from cDNA from a multi-tissue panel from *X. tropicalis* as described for cDNA amplification for sequencing and primers as described above.

cDNA library construction and screening from X. tropicalis

Total RNA, containing ~20% thymus RNA, from *X. tropicalis* was obtained as described above. Poly(A) messenger RNA (mRNA) was isolated by using a PolyATtract mRNA isolation system (Promega, WI). The Uni-Zap cDNA library was constructed from 5 μ g mRNA using the Zap-cDNA Gigapak III Gold Cloning Kit (Stratagene, CA). A ³²P-labeled probe, as used in Northern blot analysis, was used to screen the library under high stringency conditions (Bartl et al. 1997).

Comparative and phylogenetic analysis

Deduced amino acid sequences of aire exons as well as PHD and related RING domains were aligned with default Clustal W (Thompson et al. 1997) parameters (including gap opening penalty of 10 and gap extension penalty of 0.05). Accession numbers used were: human Aire NP 000374, mouse Aire AAI03512, human WSTF AAC97879, human KAP1 AAB37341, human MEKK1 AAC97073, human KSHV-K3 AAB62674, and human C-MIR NP 001002266. Bioedit (Hall 1999) was used to create pairwise sequence identity matrices for Table 1. The PHYLIP (Felsenstein 1989) suite of programs were employed for the phylogenetic analysis of the PHD domains. After CLUSTAL W alignment, multiple datasets for bootstrap analysis were randomly generated in Seqboot, and Prodist calculated distances from those using maximum likelihood estimates. Neighborjoining trees were created for each with Neighbor, and

Table 1 Deduced amino acid percent identity of each exon to human aire

Human exon	Mouse	Opossum	Chicken	X. tropicalis	Zebrafish
1	89	60	66	44	43
2	86	71	62	38	43
3	65	23 ^a	42	25	4
4	68	60 ^b	40	36	36
5	87	68	8	9	63
6	76	66	NA	14	30
7	48	50	27	30	22
8	95	85	78	79	76
9	56	32	15	21	18
10	48	34	NA	8 ^c	13
11	75	45	NA	NA	22
12	51	22	22	NA	19
13	81	39	39	30	25
14	73	44	63	39 ^d	37
Overall	74	53	46	27	37

SAND domains is contained within human exons 5–7; PHD1 contained within human exons 8 and 9; RING/PHD2 is contained within human exons 11 and 12; CTD is within human exons 13 and 14. *NA* No analogous exon, therefore, subsequent exons numbers shift forward by one ^a Opossum exon 3 plus 5' end of exon 4

^bOpossum 3' end of exon 4

^cX. tropicalis exon 10 plus 5' end of 11 (rest of 11 has no nonfrog analogue)

^d Chicken exon 11, frog exon 13, see Supplemental Fig. 4 for detailed alignment

Consense was used to draw the consensus tree topology. Default settings were used to create this tree, including Dayhoff's PAM matrix, no outgroup rooting, and Majority Rule (extended). One thousand bootstrap replications were analyzed. Trees drawn with the Fitch algorithm gave similar topology to the neighbor-joining tree shown.

Results and discussion

Sequences of various vertebrate classes

The different domains and regions of Aire, as delineated in mouse and human, are displayed in Fig. 1. A predicted Aire protein sequence for opossum was obtained by a BLASTx search of the genome, and it was aligned to mouse and human Aire. Other than the deletion of one NRB in opossum, all of the regions aligned well in the Aire sequences from the three mammalian species. Sequences exhibited low identity between the mammalian species, particularly within the PRR (Fig. 2, Supplemental Fig. 4, Table 1).

Analysis of frog and chicken Aire reveals poor domain homology within the tetrapods

Our original plan was to isolate *aire* from *Xenopus* for use in functional studies of tolerance during ontogeny (Kyewski

and Klein 2006). Portions of the X. tropicalis aire sequence were obtained using tBLASTx searches with the human sequence as bait on the X. tropicalis genomic database. On scaffold 55, a sequence was found that was similar to the human and mouse Aire HSR, NRB, PHD1, and CTD (Fig. 1). PCR amplification from thymus cDNA was then performed to obtain partial aire cDNA sequences; additionally, several partial sequences were acquired that overlapped with the PCR clones in the X. tropicalis EST databases (Supplemental Fig. 1). We then screened a X. tropicalis thymus/spleen/intestine cDNA library with these probes and isolated one full-length aire cDNA clone (Supplemental Fig. 1). Unexpectedly, frog Aire is quite divergent from human and mouse, both in sequence and domain/region composition (Figs. 1 and 2). The second PHD domain is not present in the frog protein; frog aire contains one large exon in a similar position that encodes a sequence with little similarity to any of the known aire genes, notably lacking the characteristic Zn-binding residues (C/HXXC) in the deduced amino acid sequence (Fig. 2). This unique region was confirmed by numerous PCR-amplified and cDNA library-derived clones as well as three EST sequences. Furthermore, we verified this unusual aire sequence in the closely related X. laevis (Supplemental Fig. 1). Together, these data suggest that certain aire domains are poorly conserved between mammals and frog.

Frog aire is predominantly expressed within the thymus

A panel of RNA from numerous tissues was extracted from postmetamorphic *X. tropicalis*. A single band of approximately 2,400 bp was observed on a Northern blot only in the thymus (Fig. 3a). A faster migrating band was identified in the brain, which may represent an alternatively spliced transcript. A RT-PCR also was performed, and amplification of *aire* was most prominent in the thymus (Fig. 3c). Low levels of *aire* expression were seen in the testes and brain, consistent with a study in humans (Klamp et al. 2006). These data show that despite the poor conservation in sequence between mammals and frog, like in mammals, *aire* expression is highest in the thymus of amphibians and the gene is likely involved in tolerance induction.

Chicken *aire* shows further domain diversity within the tetrapods

Because of the low similarity between frog and mammalian Aire, we wanted to study its structure in representatives of other vertebrate classes. Partial sequences of chicken (class Aves) *aire* were obtained through BLAST searches of the chicken genome database using human and mouse sequences as queries. With no ESTs in the chicken databases, chicken *aire* PCR primers were then designed in the

Fig. 2 Aire amino acid sequence alignment. The deduced amino acid sequence of Aire for each species was aligned using ClustalW followed by manual manipulation for each domain. *Dots* indicate identical amino acid residues, *dashes* represent absence of an amino acid, and domain designation is color coded and represented above the human sequence. *Notation on the bottom line* denote mutations observed in human APS1 patients: *cross*, mutation resulting in premature stop codon; *minus sign*, deletion of specified residues resulting in frameshift; *plus sign*, insertion of residues resulting in frameshift; *plus sign enclosed in parentheses*,

putative exons 1 and 14 (based on the human sequence) in the hopes of amplifying the majority of the cDNA. PCR amplification of thymus cDNA uncovered four major splice insertions in introns that result in disruption of splicing; point mutations are noted by the single letter amino acid substitution. Residues 418 and 311 are represented by more than one mutation separated by *slash*. Sequences for alignment were derived from the following accession numbers or sequence databases: human Aire: CAA08759, NM_000383; mouse: CAB36909, BC103511; *X. tropicalis*: EU004201, DT431622, DT431623, BX709411, CR566920, genomic scaffold 55 (www. genome.JGI-psf.org v4.1); zebrafish: EU042187, chicken: EU030003-EU030008; opossum: ENSMODG00000011425 (www.ensembl.org)

variants or potential isoforms (Supplemental Fig. 2). The sequences obtained by PCR were then aligned to the chicken genomic database. The chicken genome project is

Fig. 3 Detection of *aire* mRNA expression in various frog tissues. **a** Northern blot analysis of tissue array from *X. tropicalis.* 20 μ g of total RNA was used, and the blot was probed with a DNA fragment extending from PHD 1 to the CTD (Supplemental Fig. 1). Tissues are noted above each lane. **b** An image of ribosomal 18S and 28S RNA

bands was used as a loading control. **c** RT-PCR analysis of the tissue array from young frogs aged 2 months, using 35 cycles, primers from the HSR to upstream of PHD1 and cDNA made from 1 μ g of RNA. All size markers are noted in the *leftmost lane*

only partially completed, and large gaps within the genomic region for *aire* were evident (Shiina et al. 2007). Using the same specific primers as were used for cDNA amplification, the chicken *aire* was amplified from genomic DNA. Consistent with the compact nature of the chicken genome, chicken *aire* spans only ~3,500 bp. The *aire* cDNA was then aligned to the genomic DNA sequences and further compared to a partial turkey genome sequence (Supplemental Fig. 2); the deduced amino acid sequences were compared to the human, chicken, and frog sequences (Figs. 1 and 2). Unlike frog Aire, certain conserved residues of the SAND and PHD2 domains are evident. However, two of the PHD2 ion-binding residue pairs (C/HxxC) are absent (Fig. 2 and Supplemental Fig. 4), and parts of the

exon encoding PHD2 are fused to the second exon of PHD1 (equivalent to exons 8 and 10 in human), thus eliminating the PRR. From these data, *aire* has clearly undergone significant diversification in more than one class of tetrapods. However, like the frog protein, chicken Aire retains several domains found in the human—HSR, 3 NRB, NLS, PHD1, and CTD—which are presumed to be indispensable for function.

Aire from teleost fishes is more similar to mammals than to frog or chicken

After observing large variations in the domain composition of Aire in tetrapods, we isolated *aire* from the zebrafish.

The full-length *aire* cDNA was sequenced using primers designed from the 5' and 3' untranslated region, and the translated sequence was compared to those of other species. In addition to HSR, NLS, PHD1, and CTD found in all of the tetrapods analyzed, zebrafish Aire also contains the PHD2 and SAND domains (Fig. 1). No sequence similarity was observed between the human PRR and the zebrafish sequence; however, a segment of the zebrafish and frog Aire contains a serine-rich region downstream of the PHD1, which might serve the same function. The sequences were further compared for amino acid identity (Fig. 2). Our results indicate that the Aire domain composition is more highly conserved between the fishes and mammals than representatives of other tetrapod classes. aire transcription was determined by RT-PCR of a multiple-tissue cDNA panel, and expression was only detected in the thymus (data not shown). Deduced amino acid sequence comparisons between zebrafish Aire and the two species of pufferfish were obtained by Clustal W with minor manual adjustment. These alignments revealed gaps within the SAND domain between pufferfish and zebrafish, suggesting variance even among teleosts (Supplemental Fig. 3). Additionally, a sequence was identified from the Elephant shark genome homologous to a small portion of the teleost PHD1 (data not shown). However, at this time, we are unable to verify that this fragment is in fact *aire* from cartilaginous fish.

Analysis of protein translations

The NRB, NLS, and HSR are conserved

We analyzed the N-terminal sequence of Aire containing the HSR, NRB, and NLS for all species (Fig. 2). Numerous residues of the HSR are involved in dimerization (Meloni et al. 2005), which is essential for the function of Aire in humans; APS1 is observed in numerous patients with HSR mutations (Fig. 2). The human HSR has a predicted tertiary structure containing four alpha helices and encompasses two NRB, and this feature is present in all vertebrate classes studied. The conserved nature of the HSR in other vertebrates when compared to humans suggests that this domain is also required for dimerization in other vertebrates.

NRB are common in transcription factors and are essential for proper nuclear localization. The NRB is an α -helical motif required for ligand-dependent binding of coactivators of transcription to nuclear receptor proteins. The N-terminal and C-terminal NRB, as well as the inverted NRB at amino acid position 27–33, are conserved in all species (Fig. 2, Supplemental Fig. 4). NRB bind accessory factors 1 or 2 complexes with variable specificity, and they have been organized into three major classes (Chang et al.

1999). Two general consensus sequences within the Aire NRB were detected that differ from the three described NRB classes, a charged (D/E)L(R/D)XLL and uncharged A(L/I) LXXLL or ALXXLL (Fig. 2, Supplemental Fig. 4). These data show that the Aire NRB comprise a unique subset of evolutionarily conserved NRB (with unknown ligands).

Potential NLS are evident in all species in which aire has been isolated (Fig. 1, yellow box). Our analysis of human Aire shows two potential NLS (Fig. 2, amino acid residues 110-133 and 155-167). Residues 113-133 have been determined to function as a monopartite NLS that interacts with the minor binding site of importin- α family proteins, including $\alpha 3$ and $\alpha 5$ and a lesser extent to $\alpha 1$ (Ilmarinen et al. 2006). These previous studies of the Aire NLS were based on mutagenesis of residues 113, 114, and 131-133. Loss of NLS activity was evident only after mutation of residues 131-133, indicating a likely monopartite NLS. In contrast to these findings, minor-site binding is typically consistent with bipartite NLS, while monopartite NLS bind to the major binding site. These findings did not take into consideration upstream residues 110-111 that may replace the deleted residues at 113-114; our data show that an equivalent to the human Aire at residues 110-111 or 113-114 (R or K) is conserved in all species, as well as residues corresponding to human Aire 131-133. Based on the conserved nature of the NLS and previous data showing minor groove binding, we theorize that the Aire NLS at residues 110-133 still potentially functions as a bipartite NLS.

A second potential NLS is found downstream of this first NLS at 159–167. A consensus sequence of GXXX KXPPKK(D/E) is observed, and similarity to a subset of monopartite NLS exists. However, NLS typically conform loosely to consensus sequences, which are mostly identified by amino acid composition and confirmed by mutagenesis assays (Nair et al. 2003). Further study is needed to analyze the function of these conserved residues in relation to nuclear localization. However, the conserved nature of the residues 159–167 suggests that this motif is a candidate for investigation as a second Aire NLS.

The SAND domain is poorly conserved

As mentioned, the SAND domain has been implicated in direct DNA binding. The presence of a SAND domain has been reported previously in human Aire (Kumar et al. 2001). We aligned the SAND domains from each species (Supplemental Fig. 4) and found that conserved residues in this domain are present in zebrafish and mammalian Aire. However, a few of these residues are observed in chicken or frog suggesting either a different function of the SAND domain or that the absence of this domain does not impair Aire function. The PHD1 domain is highly conserved between species

The Aire PHD1 domain is well conserved in all vertebrates examined. Aire PHD1 has been predicted to function in protein/protein interactions because the 3D structure shows overall negatively charged residues on the surface (Bottomley et al. 2005). These negatively charged residues are also conserved in all species. Moreover, the region between the third and fourth H/CXXC Zn-binding motif has been found to be crucial for the PHD domain binding affinity. Based on these findings, it is likely that Aire PHD1 binds a similar or the same substrate in the sequences analyzed. The chicken *aire PHD1* exon exhibits a unique genomic arrangement where the second portion of it is fused on the same exon as *PHD2* (Supplemental Fig. 2). At this time, we can only

speculate that this is a consequence of the general compaction of the chicken genome and this potentially has no functional significance (Schmutz and Grimwood 2004).

The proline-rich region is characteristic only of mammalian Aire

Alignment of the region downstream of the first PHD domain shows that the PRR is present only in mammals and that even among mouse, human, and opossum, it is divergent in sequence (Table 1 and Supplemental Fig. 4). The "homologous" region in the frog and fish is a serine-rich section, and chicken totally lacks this portion of the protein, as the *PHD1*- and *PHD2*-coding regions are joined in exon 8. There are no obvious PRR repetitive patterns in

	*	*	*	*	*	*		*	*	
human AIRE PHD1	QKNEDECA	/CRDGGE·	-LICCDG-	CPRAF	HLA	CLSPPLRE	IPSGTWF	RCSS	CLQATV	QEVQPRAEE-
mouse Aire PHD1		н				Q.	L.	C	GR.	.QNLSQP.V-
opossum Aire PHD1	R.D					ETD	M.	.GC	.IVGK.	HQDGHHG.E-
frog Aire PHD1	S.DS.			s.	s	VTH		.DT	.NTGRF	MSDGQPEMG-
chicken Aire PHD1	. QD	G ·		•	P	•VPR	vç	2	.VAKLGRL	R.ADTA
danio Aire PHD1	EH.D	K		•	s	•VTS	R	.QL	.QSNRL	KDRTYTHV
human AIRE PHD2	LAPGAR.G.	GTD	-VLR.TH-	·.AA	.WR	.HF.AGTS	RGTGL.	.R.	.SGDVI	'PAPVE
mouse Aire PHD2	PAPSAR.S.	GT·	-VLR.AH-	·.AA	.WR	.HF.TAAA	RGTNL.	.ĸ.	.SADST	PTPGT
possum Aire PHD2	LSAT.G.	QGSED	LH.AQ-	.s.v.	.WH	.YF.ANSS	RTGMVF	C.KP	.SEVP.	LTAEE
danio Aire PHD2	VGIRMA.GI	[.YLTRGH	ET.PQ-	.LQ.Y	.AL	.NF	N.RT.	.RN	.SRSWG	PGNDN -
chicken Aire PHD2	T.GF	R.FSSIS	APQR-	•		TRDG	DG.L.I		.TGI	P.TG
WSTF PHD	ARCKVCF	RKKDDI	КLЕ-	.NK	F		VD.E.Ç).PA	.QP	
KAP1 PHD	DSATI.R.	QKPD	VM.NQ-	.EFC.	D	.HL.A.QD	VGEE.S	S.LC	HVLPDLKE	ED.DLACKLN
MEKK1 RING	REPLIC.PI	L.LL.MLD.E S	S.TV.EDO	G.RNKI	.HH	M.IWAE.	CRRNREPLI	.PL	.RSKW	RSHDFYS
KSHV-K3 RING	-MEDEDVPV.WI	.NEELGN·	-RFRAC	. TGEI	ENVHRS	STW.TI	SR NT <i>I</i>	A.QI	.GV	YNTR
C-MIR RING	TPSSQD.R]	.HCEG-DDESI	PTPCH-	. TGSI	.FVHQA	AQQWIKS	D.RC	C.EL	.KYEFI	M.TK

а

Fig. 4 Amino acid alignment of Aire PHD domains with RING domains and phylogenetic tree. **a** PHD domains of Aire from the discussed species were aligned with non-Aire PHD domains and RING finger domains. *Hyphens* show gaps introduced in the sequences, and *dots* show identity with top human AIRE sequence.

Asterisks mark Zn-binding residues. *Shaded boxes* denote conserved tryptophan residues. **b** Neighbor-joining tree drawn from alignment in **a**. *Bar at the bottom* shows genetic distance. Support out of 1,000 bootstrap replications is shown at *nodes*

Aire as is observed in other proteins with PRR (Williamson 1994). In human and mouse, there exists a potential NRB (ALXXLL) within the PRR, but it is unclear whether this sequence is functional. Based on these data, we hypothesize that the PRR is likely to be structural in nature because it is neither represented by missense mutations in human disease (Fig. 2) nor conserved evolutionarily.

PHD2 aligns with ring finger domains instead of PHD domains

The Aire PHD2 is a putative Zn-binding domain with negative charges on the predicted exposed surfaces (Bottomley et al. 2005). The frog completely lacks PHD2, and the first half of the chicken PHD2 is fused on the same exon as the second half of PHD1. A phylogenetic analysis was performed including the Aire PHD domains and several other proteins containing Ring finger domains (Fig. 4); note that PHD and Ring domains are members of the "treble class family" of Zn-binding domains, but there is only weak structural similarity between them (Grishin 2001). The Aire PHD2 from all species groups more closely with ring finger domains (Ring). Additionally, the PHD1 and other PHD domains contain a conserved tryptophan, but the position of the PHD2 tryptophan is consistent with those of Ring but not PHD domains. Based on these observations, we propose that Aire PHD2 of all species is better classified as a Ring domain.

The Aire C-terminal domain is well conserved

The CTD contains a NRB in all species except zebrafish (Fig. 2) and a highly conserved area of charged residues. There is no correlation between this "motif" and domains of known function. The CTD is the third most highly conserved region of Aire (Table 1), and mutation or deletion of this domain results in APS1 in humans. We theorize that the CTD provides an essential function in the Aire protein, yet this function remains unknown.

The *aire* genomic organization is not evolutionarily conserved

aire from mouse, chicken, opossum, and zebrafish were compared to the human orthologue (Fig. 5). The first four exons of *aire* are relatively conserved in both their amino acid translation and exon size among evolutionarily distant animals. The PHD1 is encoded by exon 8 in human or the equivalent for each species, and human exon 13 and 14 (or similar 3' exons) encoding the CTD are also highly conserved. Other exons are deleted, joined, or of various sizes when comparing the vertebrate species: *SAND*, *PRR*, *PHD2*, and two of the four *NRB*. These data show that the genomic arrangement of *aire* is relatively divergent between humans and other vertebrates. Furthermore, the more conserved regions of *aire* correlate with greater exon conservation (Table 1).

Comparative analysis and human disease

Point mutations in aire alleles of APS1 patients (Heino et al. 2001; Podkrajsek et al. 2005) correlate well with evolutionarily conserved residues. Of the 17 point mutations that result in amino acid substitutions, 14 occur in residues that are 100% conserved in the species analyzed (Fig. 2). Conversely, the insertions and deletions that result in human APS1 occur predominantly within the exons that are the least evolutionarily conserved. Eight of 20 insertions and deletions within the coding sequence of Aire occur in exon 10 alone; this exon encoding the PRR is the least conserved domain within aire and is flanked by an intronic microsatellite DNA sequence in Aves (Supplemental Fig. 3). Numerous microsatellite DNA sequences flank human aire on chromosome 21q22.3 (Chen et al. 1998). Because point mutations occur somewhat randomly and insertions and deletions occur predominantly at areas of genomic instability, we theorize that certain areas of the aire coding region, exon 10 for instance, span regions of greater genomic instability.

Fig. 5 Genomic arrangement of the *aire* coding region in human (14 exons), mouse (14), opossum (14), chicken (12), and zebrafish (14). The frog is omitted because the genome seems to be misassembled in several introns. The figure is to scale, and nucleotide positions are shown on the *x*-axis. Exon 8, encoding a portion of PHD1, is in *red* for reference

Conclusions

Comparative analysis of Aire among different vertebrate classes revealed that the most conserved domains are the NLS, NRB, HSR, PHD1, and CTD. With the exception of the PHD1, the most highly conserved regions of Aire are involved in nuclear localization, transport, and dimerization. Together, this suggests that Aire interacts with a major cofactor or cofactors through the PHD1, which is conserved through evolution, and potentially links to other coactivators that are not conserved. Conversely, the SAND domain or other DNA interaction domains have evolved rapidly and perhaps act in a more indiscriminate manner with binding partners. We show that the PHD2 domain shows greater sequence similarity with Ring than to other PHD domains. Furthermore, our findings show that, not unexpectedly, evolutionarily conserved residues correlate with mutations in human aire that result in autoimmunity.

Acknowledgments This work has been funded by the NIH (R01AI27877).

References

- Ahonen P, Myllarniemi S, Sipila I, Perheentupa J (1990) Clinical variation of autoimmune polyendocrinopathy-candidiasis– ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med 322:1829–1836
- Anderson MS, Venanzi ES, Chen Z, Berzins SP, Benoist C, Mathis D (2005) The cellular mechanism of Aire control of T cell tolerance. Immunity 23:227–239
- Bartl S, Baish MA, Flajnik MF, Ohta Y (1997) Identification of class I genes in cartilaginous fish, the most ancient group of vertebrates displaying an adaptive immune response. J Immunol 159:6097– 6104
- Bottomley MJ, Collard MW, Huggenvik JI, Liu Z, Gibson TJ, Sattler M (2001) The SAND domain structure defines a novel DNA-binding fold in transcriptional regulation. Nat Struct Biol 8:626–633
- Bottomley MJ, Stier G, Pennacchini D, Legube G, Simon B, Akhtar A, Sattler M, Musco G (2005) NMR structure of the first PHD finger of autoimmune regulator protein (AIRE1). Insights into autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy (APECED) disease. J Biol Chem 280:11505–11512
- Chang C, Norris JD, Gron H, Paige LA, Hamilton PT, Kenan DJ, Fowlkes D, McDonnell DP (1999) Dissection of the LXXLL nuclear receptor–coactivator interaction motif using combinatorial peptide libraries: discovery of peptide antagonists of estrogen receptors alpha and beta. Mol Cell Biol 19:8226–8239
- Chen QY, Lan MS, She JX, Maclaren NK (1998) The gene responsible for autoimmune polyglandular syndrome type 1 maps to chromosome 21q22.3 in US patients. J Autoimmun 11:177–183
- Felsenstein J (1989) PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166
- Grishin NV (2001) Treble clef finger—a functionally diverse zincbinding structural motif. Nucleic Acids Res 29:1703–1714
- Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

- Heino M, Peterson P, Kudoh J, Nagamine K, Lagerstedt A, Ovod V, Ranki A, Rantala I, Nieminen M, Tuukkanen J, Scott HS, Antonarakis SE, Shimizu N, Krohn K (1999) Autoimmune regulator is expressed in the cells regulating immune tolerance in thymus medulla. Biochem Biophys Res Commun 257:821–825
- Heino M, Peterson P, Kudoh J, Shimizu N, Antonarakis SE, Scott HS, Krohn K (2001) APECED mutations in the autoimmune regulator (AIRE) gene. Hum Mutat 18:205–211
- Ilmarinen T, Melen K, Kangas H, Julkunen I, Ulmanen I, Eskelin P (2006) The monopartite nuclear localization signal of autoimmune regulator mediates its nuclear import and interaction with multiple importin alpha molecules. FEBS J 273:315–324
- Johnnidis JB, Venanzi ES, Taxman DJ, Ting JP, Benoist CO, Mathis DJ (2005) Chromosomal clustering of genes controlled by the aire transcription factor. Proc Natl Acad Sci USA 102:7233–7238
- Klamp T, Sahin U, Kyewski B, Schwendemann J, Dhaene K, Tureci O (2006) Expression profiling of autoimmune regulator AIRE mRNA in a comprehensive set of human normal and neoplastic tissues. Immunol Lett 106:172–179
- Kumar PG, Laloraya M, Wang CY, Ruan QG, voodi-Semiromi A, Kao KJ, She JX (2001) The autoimmune regulator (AIRE) is a DNA-binding protein. J Biol Chem 276:41357–41364
- Kyewski B, Klein L (2006) A central role for central tolerance. Annu Rev Immunol 24:571–606
- Mathis D, Benoist C (2007) A decade of AIRE. Nat Rev Immunol 7:645–650
- Meloni A, Fiorillo E, Corda D, Perniola R, Cao A, Rosatelli MC (2005) Two novel mutations of the AIRE protein affecting its homodimerization properties. Hum Mutat 25:319
- Mertz LM, Rashtchian A (1994) Nucleotide imbalance and polymerase chain reaction: effects on DNA amplification and synthesis of high specific activity radiolabeled DNA probes. Anal Biochem 221:160–165
- Nair R, Carter P, Rost B (2003) NLSdb: database of nuclear localization signals. Nucleic Acids Res 31:397–399
- Pitkanen J, Vahamurto P, Krohn K, Peterson P (2001) Subcellular localization of the autoimmune regulator protein. Characterization of nuclear targeting and transcriptional activation domain. J Biol Chem 276:19597–19602
- Podkrajsek KT, Bratanic N, Krzisnik C, Battelino T (2005) Autoimmune regulator-1 messenger ribonucleic acid analysis in a novel intronic mutation and two additional novel AIRE gene mutations in a cohort of autoimmune polyendocrinopathy– candidiasis–ectodermal dystrophy patients. J Clin Endocrinol Metab 90:4930–4935
- Schmutz J, Grimwood J (2004) Genomes: fowl sequence. Nature 432:679–680
- Shiina T, Briles WE, Goto RM, Hosomichi K, Yanagiya K, Shimizu S, Inoko H, Miller MM (2007) Extended gene map reveals tripartite motif, C-type lectin, and Ig superfamily type genes within a subregion of the chicken MHC-B affecting infectious disease. J Immunol 178:7162–7172
- The Finnish-German APECED Consortium (1997) An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet 17:399–403
- Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882
- Uchida D, Hatakeyama S, Matsushima A, Han H, Ishido S, Hotta H, Kudoh J, Shimizu N, Doucas V, Nakayama KI, Kuroda N, Matsumoto M (2004) AIRE functions as an E3 ubiquitin ligase. J Exp Med 199:167–172
- Williamson MP (1994) The structure and function of proline-rich regions in proteins. Biochem J 297(Pt 2):249–260

DNA: AA :	TGGTGTTTGCCCCCCTTTTGTGCTATTACTGCATTTTAAATATGTATAGCACTGGATACAGGATTCCCCAGGATGTCGGAGCGAGACCCTTCCCCCATCCAGCCAG	CGCACTCTCC
	Forward 1	
DNA:	TGAAATGGTACC <u>GCACTGAGATAGCTGTGGCCGT</u> GACTGACCTGTTCCCTCTGCTGCACGGCATGATGGACAGAGAACTCATTACTGAGGAGAGATTCCAGGAAACACAG	CGGGTTGGGG
AA:	$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	·R··V··G··
X.1.	A V T D L F P L L H G M M D R E L I T E E K F Q E T Q	Q A G
DNA:	AGGACAGTGGTGCTCAAAAGGCTTCCCATACTCTTTTCACGTGGCTTTTAAGCTGTGATTTGCCCATCATCCAAGGCTTCTGGTCTCTCCTGTCTACTGATTATATACTC	AACAGCTACC
AA:	$\mathbb{E} \cdot \mathbb{D} \cdot \mathbb{S} \cdot \mathbb{G} \cdot \mathbb{A} \cdot \mathbb{O} \cdot \mathbb{K} \cdot \mathbb{A} \cdot \mathbb{S} \cdot \mathbb{H} \cdot \mathbb{T} \cdot \mathbb{L} \cdot \mathbb{F} \cdot \mathbb{T} \cdot \mathbb{W} \cdot \mathbb{L} \cdot \mathbb{L} \cdot \mathbb{S} \cdot \mathbb{C} \cdot \mathbb{D} \cdot \mathbb{L} \cdot \mathbb{P} \cdot \mathbb{I} \cdot \mathbb{I} \cdot \mathbb{O} \cdot \mathbb{G} \cdot \mathbb{F} \cdot \mathbb{W} \cdot \mathbb{S} \cdot \mathbb{L} \cdot \mathbb{L} \cdot \mathbb{S} \cdot \mathbb{T} \cdot \mathbb{D} \cdot \mathbb{Y} \cdot \mathbb{I} \cdot \mathbb{L}$	·N··S··Y··
X.l.	E G S G A Q K A S H A L F T W L L S C D L P T I Q G F W S L L S T D Y I L	K S Y
DNA:	CACGTCTCTCAGGAATTCACAGCTTACTTTTTGCAGTTACNGGCTCATCTCACCACAAGGCTCGGAGACAACCCCCTACCAACAAACCTGTATCTCATCCGAAAACCCCAG	GCTAAACGAA
AA:	$P \cdot R \cdot L \cdot S \cdot G \cdot I \cdot H \cdot S \cdot L \cdot L \cdot F \cdot A \cdot V \cdot T \cdot G \cdot S \cdot S \cdot H \cdot H \cdot K \cdot A \cdot R \cdot R \cdot Q \cdot P \cdot P \cdot T \cdot N \cdot K \cdot P \cdot V \cdot S \cdot H \cdot P \cdot K \cdot P \cdot Q \cdot Q \cdot P \cdot P \cdot P \cdot T \cdot N \cdot K \cdot P \cdot V \cdot S \cdot H \cdot P \cdot K \cdot P \cdot Q \cdot P \cdot P \cdot Q \cdot P \cdot P \cdot V \cdot S \cdot H \cdot P \cdot V \cdot S \cdot P \cdot Q \cdot P \cdot P \cdot Q \cdot P \cdot P \cdot V \cdot S \cdot P \cdot Q \cdot P \cdot Q \cdot P \cdot P \cdot Q \cdot P \cdot P \cdot Q \cdot P \cdot Q \cdot P \cdot P \cdot Q \cdot Q \cdot P \cdot Q \cdot Q \cdot P \cdot Q \cdot $	·A··K··R··
X.1.	PRLSGIHSALCADT-SSHRKARRPPHTNKPVSLLKSH	AKRR
DNA:	AAGCTGGAGCAAACAAAGACACTTTTGCAGTGTATCCATTGCGCGCTGGCCCACCAGCCAAAACAAAGCCTCCGCGGAAAGCTGAAAAACCTATGAGTTTGGATTGTCCT	CTTATACACC
AA:	$K \cdot \cdot A \cdot \cdot G \cdot \cdot A \cdot \cdot N \cdot \cdot K \cdot \cdot D \cdot \cdot T \cdot \cdot F \cdot \cdot A \cdot \cdot V \cdot \cdot Y \cdot \cdot P \cdot \cdot L \cdot \cdot R \cdot \cdot A \cdot \cdot G \cdot \cdot P \cdot \cdot P \cdot \cdot A \cdot \cdot K \cdot \cdot T \cdot \cdot K \cdot \cdot P \cdot \cdot R \cdot \cdot K \cdot \cdot A \cdot \cdot E \cdot \cdot K \cdot \cdot P \cdot \cdot M \cdot \cdot S \cdot \cdot L \cdot \cdot D \cdot \cdot C \cdot \cdot P$	$\cdot {\tt L} \cdots {\tt I} \cdots {\tt H} \cdot \cdot$
X.l.	K A G G E K D T S S A N S L S A G P P A K T K P P R K A E K P L A L D C L	LΤQ
DNA:		
AA:	$P \cdot P \cdot (0 \cdot K \cdot I \cdot P \cdot S \cdot V \cdot L \cdot T \cdot V \cdot N \cdot (0 \cdot N \cdot D \cdot K \cdot K \cdot P \cdot V \cdot S \cdot Y \cdot T \cdot I \cdot S \cdot K \cdot P \cdot P \cdot A \cdot N \cdot T \cdot G \cdot S \cdot N \cdot I \cdot D \cdot P \cdot S \cdot S \cdot (0 \cdot N \cdot I \cdot D \cdot P \cdot S \cdot Y \cdot T \cdot I \cdot S \cdot Y \cdot T \cdot I \cdot S \cdot Y \cdot S \cdot Y \cdot I \cdot S \cdot Y \cdot S \cdot Y \cdot I \cdot S \cdot Y \cdot S \cdot Y \cdot I \cdot S \cdot Y \cdot Y$	·M··O··M··
X.1.	S P Q K I S S V L T A N Q S E M K P V S Y T I S K P A A N T G S S I D R S	тõк
	<u>,</u> , , , , , , , , , , , , , , , , , , ,	
77.		GAAIIGCCIC
x 1	EKELOAVEKNDTODIKKITI RDKI TSOOVGSTADSVIA	E L P
	Reverse 1/Forward 2	
DNA:	AATACCAGAGTAATGACGATGAGTGCTCAGTGTGCAGAGATGGGGGGGG	ACCCATATTC
AA:	$\mathbb{P} \cdot \mathbb{Y} \cdot \mathbb{Q} \cdot \mathbb{S} \cdot \mathbb{N} \cdot \mathbb{D} \cdot \mathbb{D} \cdot \mathbb{E} \cdot \mathbb{C} \cdot \mathbb{S} \cdot \mathbb{V} \cdot \mathbb{C} \cdot \mathbb{R} \cdot \mathbb{D} \cdot \mathbb{G} \cdot \mathbb{G} \cdot \mathbb{G} \cdot \mathbb{E} \cdot \mathbb{L} \cdot \mathbb{I} \cdot \mathbb{C} \cdot \mathbb{C} \cdot \mathbb{D} \cdot \mathbb{G} \cdot \mathbb{C} \cdot \mathbb{P} \cdot \mathbb{R} \cdot \mathbb{S} \cdot \mathbb{F} \cdot \mathbb{H} \cdot \mathbb{L} \cdot \mathbb{S} \cdot \mathbb{C} \cdot \mathbb{L} \cdot \mathbb{V} \cdot \mathbb{P} \cdot \mathbb{P} \cdot \mathbb{L}$	·T··H··I··
X.1.	Q Y Q S N D D E C S V C R D G G E L I C C D G C P R S F H L S C L V P P L	тні
DNA:	CAAGCGGCACATGGAGATGTGATACTTGCAATACAGGGAGACCTATGTCAGATGGACAACCTGAGATGGGGGAAACCACTGGGTTATCTAAGAAGCCCTCACAGGAGTCT	GCAGAGGCCC
AA:	$\mathbb{Q} \cdot \cdot \mathbb{S} \cdot \cdot \mathbb{G} \cdot \cdot \mathbb{T} \cdot \mathbb{W} \cdot \mathbb{R} \cdot \mathbb{C} \cdot \mathbb{D} \cdot \cdot \mathbb{T} \cdot \mathbb{C} \cdot \mathbb{N} \cdot \mathbb{T} \cdot \mathbb{G} \cdot \mathbb{R} \cdot \mathbb{P} \cdot \mathbb{M} \cdot \mathbb{S} \cdot \mathbb{D} \cdot \mathbb{G} \cdot \mathbb{Q} \cdot \mathbb{P} \cdot \mathbb{E} \cdot \mathbb{M} \cdot \mathbb{G} \cdot \mathbb{E} \cdot \mathbb{T} \cdot \mathbb{T} \cdot \mathbb{T} \cdot \mathbb{G} \cdot \mathbb{L} \cdot \mathbb{S} \cdot \mathbb{K} \cdot \mathbb{K} \cdot \mathbb{P} \cdot \mathbb{S} \cdot \mathbb{Q} \cdot \mathbb{E} \cdot \mathbb{S} \cdot \mathbb{S} \cdot \mathbb{Q} \cdot \mathbb{E} \cdot \mathbb{S} \cdot \mathbb{Q} \cdot \mathbb{E} \cdot \mathbb{S} \cdot \mathbb{E} \cdot$	·A··E··A··
X.1.	P S G T W R C D A C N T Q R P T S D G Q P E K G E T T V L S K K P S Q E S	AEA

DNA: AAAGCCAGAAGAGAATGAAAGTCTGTGAGATGCTAGCAGACAAGCATGACAGCATCATACAGAAGTCCCAGCTCAATCCAGAACCAGATTTACCCCTCAGATAGTAGCCCGGAGATCT

AA:	Q·	٠S・	٠Q٠	۰K۰	R··I	M••R	•• 7	··C·	·E·	• M • ·	·L··	·A··	D··I	С••Н	··D·	٠S٠	۰I・	·I·	٠Q٠	۰K・	S··S	• • S •	٠I・	٠Q·	·N·	٠Q٠	٠I٠	۰Y・	۰P・	٠Q٠	۰I۰	• V •	٠A·	٠Q٠	·P··	E··	I.
X.1.	Q	S	Q	K	RI	м к	V	С	Е	М	Ρ	A	DI	СН	D	S	Ι	Ι	Q	K	S N	Т	Ι	R	Т	L	Ν	Ν	Ρ	Q	L	V	A	Q	Ρ	V	I
DNA:	GC	CCA	AAA	CCTZ	CAG	CCAG	AAC	CAG	ACC	TGC	CAC	CAAC	AAC	AAG	CTCT	TAC	CAA	GCT	CCC	ССТС	AGCC	TCAG	GCC	TGC	CCC	CAG	TCA	CTT	TCA	AGC	CTC	TGC	ATG	TCT	CAGA	CAC	CCT
AA:	С·	٠P・	۰K۰	·P··	т・л	A··R	••• T	· Q·	·T·	• C • •	S	· Q · ·	Q··q	2••s	•• S •	٠Y٠	٠Q٠	• A • •	·P·	• P • •	Q··P	· · Q ·	٠A·	٠C・	۰P・	٠Q٠	٠S·	·L·	٠S·	٠S٠	·L·	٠C٠	·M·	٠S·	·Q··	Т··	p
X.l.	С	Ρ	Κ	Ρ	т (G R	Т	Q	Ν	С	S	Q	QQ) S	S	F	Q	М	L	Ρ	Q P	Q	А	С	Ρ	R	S	L	S	Ν	L	С	I	S	Q	А	P
DNA:		AGG	CAG	TTTT	GCT	CGCA	ACT	TTG	CCC	AGG	CTC	CATZ	TTA	JAAC	CTC	CAT	CAG	CTG	CAG	ACCZ	ACTC	TCAA	CAT	TTG	TCT	ATT	CCA	CAA	CCT	TGT	TCC	ACA'	TCT	GGT	GTC	'AGZ	TAC
AA :	Ŀ	·R·	٠Q٠	·F··	C · · S	s••ç	··L	·L·	·P·	·R·	S	·H··	I··I	2 Т	•• S •	·H·	٠Q٠	· L · ·	Q ·	• T • •	N··S	· · Q ·	·H·	·L·	٠S·	·I·	۰P・	٠Q٠	۰P・	٠C٠	۰S۰	٠T·	۰S・	٠G•	·G··	Q	I.
X.l.	V	R	Q	I	C S	s ç	F	L	Ρ	R	S	Q	ΙI	λТ	S	Q	Q	Ρ	Q	А	N P	Q	Η	L	S	Т	Ρ	Q	Ρ	С	S	Т	S	L	Ρ	Ρ	I
DNA:	CT	TGT	ACT	ACTO	TCA	CCCT	TCA	TCC	'CAG	AAC	rgc/	ACTZ	CTC	ACC	AGA	'AAT	ACA	CGC	rcc	TGCO	AAAC	ACCT	AGC	GTC	CAA	ACT	CAG	CAT	AGC	ACA	CCC	TGT	GCT'	TTA	CAGA	AAC	AGC
AA :	P٠	· C ·	٠T٠	• T • •	L • • 5	Γ・・Ι	··Q	• S•	٠Q٠	•N•	- C	·T··	T··I	2 • • P	••D•	• N•	٠T٠	·R·	·S·	• C • •	Q··T	••••••••••••••••••••••••••••••••••••••	٠S٠	•V•	٠Q٠	٠T٠	٠Q٠	· H ·	٠S٠	٠T٠	• P •	· C ·	٠A٠	۰L・	• Q • •	к	Ε
X.l.	Ρ	С	Т	Т	L C	г ғ	Ρ	S	Q	Ν	Y	Ρ	т і	P A	D	Ν	Т	С	Т	S	Q T	P	S	V	Q	Т	Q	Η	S	Κ	Ρ	С	А	L	Q	Κ	Е
DNA:	CI	TGT	CCT	CCAG	CAT	CACC	ACAZ	ACCT	'AAA	CTC	rgc/	ATTO	CAC	ATGC	GCCC	TTA	ATT	GCCI	ATT/	AACI	CTCC	CACT	GAA	CCC	CAG	TCT	GAG	ATC.	AGT	GCA	AGG	GAA	CCT'	TCC	CAGO	GCC	AAG
AA :	D																																				
-	P.	٠C・	۰P・	۰P・・	A••\$	S··F	٠·Q	·P·	٠K•	·L·	C · ·	· I · ·	P••1	I۰۰A	••P	۰L・	٠I・	• A • •	. I	•N••	S··P	··T·	$\cdot \mathbf{E} \cdot$	٠P・	٠Q·	٠S٠	• E •	$\cdot \bot \cdot$	٠S・	٠A·	٠R·	• E •	۰P・	٠S•	٠Q٠٠	G··	Е·
X.1.	P. P	·C· C	• P • P	· P· · L	A···S A S	S··P S L	••Q E	·P· P	•K• T	·L·· L	C · · · C	· I · · I	P··H P I	I··A L V	••P P	・L・ L	·⊥· N	• A • • G	I.	N · N · ·	S··P S A	· · T · T	·E· E	• P • P	·Q· Q	·S· F	• E • E	∙⊥∙ V	·s· S	• A • P	·R· R	• E • P	• P • P	·S· V	Q· Q	G·· G	E• E
x.1.	P. P	·C· C	∙₽∙ P	·P··	A···	S··P S I	••Q E	P.	•K• T	·L·· L	C	I. I	P··H P I	I··A SV	P P	・L・ L	• I • N	G G	·I· I	• N • • N	S··P S A	· · T· T	• E • E	• P • P	• Q • Q	·S· F	·E· E	• ⊥ • V	• 5 • 5	• A • P	• R • R	·E· P	·P· P	·S· V	Q·· Q	G	E• E
X.1. DNA:	P P TG	C C C	P P	· p · · L	A···	S···F S I	E	P P GCA	•K• T	L	C	I I I	P··I P]	I··A L V	P P	·L· L	·I· N GCT	G	I	N N	S··P SA	···T· T 	E E GCA	P P	Q · Q · Q	F	·E· E CTT	V V	·S· S TCT	• A • P GAA	R R	·E· P GGA(· P· P GAG	V	Q Q	G	E · E
X.l. DNA: AA :	P P TG V·	CCC C C C C C C C C C C C C C C C C C	·P· P ATC	· P· · L CTGC	A···S A S CAAS P···S	S···F S I FACC	CAGO	P P GGCA	·K· T ACA	·L·· L GAA1 ·E··	C C C C C C C C	I I I I I I I I I I I I I I I I I I I	P··I P J	H··A V STAC	P P CTCC	·L· L TCA	·I· N GCT ·A·	G G CAAC	I I GAA(N N N N N N N N N N SAGA	S··P S A TGGT. M··V	···T· T ACCI	·E· E GCA	·P· P CCA ·P·	Q Q GTA •V•	·S· F CCT ·P·	·E· E CTT ·L·	V V CAA	S S TCT	·A· P GAA	·R· R ATA	· E · P GGA(· G ·	· P· P GAG(· E·	V V CTC2	Q · · Q · · · Q · Q · · Q	G G FTTC V··	E · E CAG P ·
X.l. DNA: AA : X.l.	P P TG V· V	CCC C CCCC P P	·P· P ATC ·I· I	·P·· L CTGC ·L·· L	A···S A S CAA P···S P··S	S··P S I FACC	E CAGO CAGO CAGO	P P GGCA · · A · T	·K· T ACA ·T· T	L L GAA E E	C C C C C C S	I · I · · I AACT · N · · N	P···P P CTG S··(S·(S)	H··A V GTAC G··T G··T	P P CTCC S	·L· L TCA ·S· S	·I· N GCT ·A· A	G G CAAC Q P	I I GAA(E	N N N N N N N N N N N N N N N N N N N	S··P SA TGGT. M··V M V	T T ACCI ••P• P	E E GCA A A	·P· P CCA ·P· P	Q Q GTA ·V· V	·S· F CCT ·P· A	·E· E CTT ·L· L	V V CAA	·S· S TCT ·S· A	·A· P GAA ·E· E	·R· R ATA	· E · P GGA(· G · G	·P· P GAG ·E· E	V V CTCZ ·L· L	Q · · Q · Q · · Q ·	G G FTTC V··· V	E · E CAG P · P
X.l. DNA: AA : X.l.	P P TC V· V	C C C C C C C C C C C C C C C C C	·P· P ATC ·I· I	· P · · L CTGC · L · · L	A · · · · · · · · · · · · · · · · · · ·	S···F S I FACC I···F I F	E CAGO ••R G	P P GGCA • A • T	·K· T ACA ·T· T	L L GAAT E	C C C C S S	I · · · I AACI · N · · N	P··· P] CTG(S··(S·(I··A J V GTAC G··T G··T	P P CTCC •• S S	·L· L TCA ·S· S	·I· N GCT ·A· A	· A · · G G CAAC · Q · · P	I I GAAC E	N · · · N N GAGA · E · · · E	S · · P S A TGGT. M · · V M V	T ACCI	E GCA A A	·P· P CCA ·P· P	Q Q GTA V V V	·S· F CCT ·P· A	·E· E CTT ·L· L	V V CAA Q	·S· S TCT ·S· A	·A· P GAA ·E· E	·R· R ATA ·I· I	· E · P GGA(· G · G	·P· P GAG(·E· E	·S· V CTCZ ·L· L	Q · · Q · Q · · Q · Q · · Q ·	G G TTC V··· V	E · CAG P · P
X.1. DNA: AA : X.1.	P P TG V· V	C C C C C C C C C C C C C C C C C C C	P P ATC I I	· P · · L CTGC · L · · L	A • • 5 A • 5 CAA5 P • • 5 P • 5	S···F S I TACC I···F I F	CAGO CAGO ··R G	P P GGCA · A· T	·K· T ACA ·T· T	L GAAT E	C C C C S S	I I I I I I I I I I I I I I I I I I I	P···I P] CTG(S··(S (H··A L V GTAC G··T G T	P CTCC S	·L· L TCA ·S· S	·I· N GCT ·A· A	G G CAAC Q P	I I GAAC E	N N GAGA	S··P SA TGGT. M··V M V	T ACCI ••P• P	GCA A	·P· P CCA ·P· P	Q Q GTA V V	F CCT ·P· A Re	·E· E CTT ·L· L ver	V V CAA Q Q se	·S· S TCT ·S· A 2	·A· P GAA ·E· E	·R· R ATA	· E · P GGA(· G · G	· P· P GAG · E· E	·S· V CTC: ·L· L	Q · · Q · Q · · Q	G G TTC V··· V	E · E CAG P · P
X.1. DNA: AA : X.1. DNA: AA :	P P TG V· V	C C C C C C C C C C C C C C C C C C C	P P ATC I I GTC	·P··· L CTGC ·L·· L GCAC	A··· A S CAA P··· P GAA G··	S···F S I FACC I···F I F GCAA	CAGC CAGC CAGC CTTC	P P GGCA T GACA	·K· T ACA ·T· T T	L GAAT E AGT(C C C C C C C C C C C C C C C	I I I I I I I I I I I I I I I I I I I	P··I P] CCTG(S··(S·(S·(S·(S·(S·(S·(S·(S·(S	H··A V GTAC G··T G··T CGA	P CTCC S S ATGC	·L· L TCA ·S· S CTT.	N GCT A A ATT	GCTC	I I GAAC E GAGA	N N N GAGA	S··P S A TGGT. M··V M V CCTT S··F	T ACCI ••P P IGAI	E GCA A A TGC	P P CCA P P TTC	Q · Q · Q · Q · Q · Q · Q · Q · Q · Q ·	F CCT ·P· A Re CAA	·E· E CTT ·L· L Ver TGG ·W·	V V CAA Q Q Se GCA	·S· S TCT ·S· A 2 TTT ·F·	· A · P GAA · E · E <u>CAG</u>	·R· R ATA ·I· I AAC	P GGA(•G• G	· P· P GAG · E· E FCC	·S· V CTCI ·L· L CGTC	Q Q AAAGG ·K··· K CCTG	G G TTC V··· V TGC	E · E CAG p · P AGTGAC 0 · · * ·

Chicken genome	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Chicken genome	110 120 130 140 150 160 170 180 190 200
Chicken genome	210 220 230 240 250 260 270 280 290 300
Chicken genome	310 320 330 340 350 V ³ 60 370 380 390 400
Chicken genome	410 420 430 440 450 TO 470 480 490 500
Chicken genome	510 520 530 540 550 560 570 580 590 600
Chicken genome	610 620 630 640 650 660 670 680 690 700 CGGCTCCGGCCCCCCCGCAGGCTGGAGGGCCAGGCCGGAGGGCCAGGCCGGCAGGCCGCGCCCCCC
Chicken genome	CATCTCCGTCCCTGTTGCAGAGGTGGACCTTGGGCAACAGTGCAGCAGCAGCAGCAGCGCCCCACAGCACCGACCCCACAGAGAACCCCAAGGC
Chicken genome	AAGAGAAAAGCCCCTGAGGAGGGGGGCCCACATGGCACAACCCTCACCACGAGCACCACCAGCCCTGGTATGGAGGCTGGACATAGGGTGTACG
Chicken genome	Job J
Chicken genome	AGAGAGTGCGGACACTCCACGCACACCCCGTACCAGCGGTGAGTGCCAATCCCCCTGGCACCTGGGGGGGACAAGCACAGGCACAAATATCTCCCCCCAGAGT

Chicken genome	1110 AATCCCAGTTGTGTG	1120 . GTGGCAGTCTG	1130 . GGCGCAGCCA	1140 FTAGAGCCCC2	1150 	1160 . ;GCTGGGCAA	1170 . ACTAGGGGCA	1180 GCAATGGGGCZ	1190 AGTGTTTGCCT0	1200 GTG
Chicken genome	1210 CACCTCTTGGGGCCA	1220 . TAGTAGAGGCC	1230 . TCAGGGCAGG	1240 CTGAGCCCCCC	1250 CTGCCCACAAA	1260 . ACCTCCCGGC	1270 . IGCCTCAGTG	1280 CAGAGGGCAGI	1290 	1300 GCC
Chicken genome	1310 AGTGAGGTGCCTGTC	1320 . ACCTGCGGGGC	1330 . TACTGAGGGA	1340 AAGCATGTCC1	1350 FCATCAGACAC	1360 . CGTGCAGGAG	1370 . CTGGGTAAGT(1380 GCAGGCACCGG	1390 	1400 GGC
Chicken genome	1410 CTCCCAAATACTAAG	1420 . TTTCAGCCCCA	1430 . GTATAAGGAG	1440 CACCCCACCCC	1450 . CTCCTTGGGA2	1460 . Aggcccccaa	1470 . AGATGCAGAGA	1480 ATATGACAGAG	1490 	1500 CTG
Chicken genome	1510 GAGCAGCGCTCCCCT	1520 \ . CTCTTCCAG GC	1530 . AGCACCAAGG	1540 Exc CAGGCAGCAG2	1550 on 5 AGCCAGGGACC	1560 . GAGTTCTGTG	1570 . ICCCAGCTGC	1580 	1590 CTGGGGGGCGAG2	1600 AAG
Chicken genome	1610 CAGGAGCCGCAGCCT	1620 . GAAGCCTGCTT	1630 . CTCGACCCAG	1640 . GGCACCCCAA2	1650 	1660 . CCCCACTCAC	1670 . CAGCACACAC		1690 ACACAAACTCT(1700 CAT
Chicken genome	1710 AGCAGCAGGAGCCTT	1720 V	1730 . TGAAGGGTCG	1740 CCAAAGCACCT	1750 E₂ FTGTTTCACAC	1760 con 6 . CAGTGGGGAG	1770 . ATGTGTGTGA	1780 CCACCTACGGC	1790 CCACCTGCCAG0	1800 CAC
Chicken genome	1810 CCCCTGTGCACAGCC	1820 . AGGAACCTGCA	1830 V .	1840 . IGAGCCCAAA	1850 	1860 . GGGACATCAC	1870 . GCTGCTCCTG	1880 	1890 CTCTACTGGCC	1900 CAC
Chicken genome	1910 TGCAGGCAGCCCGGG	1920 . GCTCTGCCACC	1930 . CCGCTGTCAC	1940 	1950 CAGCCTGGGA	1960 . GCACCAGATC	1970 . CCCGTCCCAA	1980 	1990 GCTTTGTGTT	2000 GGC
Chicken genome	2010 GATGGGAGGTGACGG	2020 . GATGGGAGGTG	2030 . CCAAGATCCC	2040 	2050 	2060 .	2070 . GCGAGCCCCT(2080 JTATCCCCACC		2100 CAA
Chicken genome	2110 .Forward 2 CGAGGATGAGTGTGC	2120 . <u>AGTGT</u> GCGGTG	2130 . ACGGCCGCCGA	2140 Exc	2150 on 7	2160 . GCCCCAGGGC	2170 . CTTCCACCTC	2180 	2190 GCCCCCGCTG(2200 ccc

Chicken genome	2210 2220 2230 2240 2250 2260 2270 2280 2290 2300
Chicken genome	2310 2320 2330 2340 2350 2360 2370 2380 2390 2400
Chicken genome Turkey genome	2410 2420 2430 2440 2450 2460 2470 2480 2490 2500
Chicken genome Turkey genome	2510 2520 2530 2540 2550 2560 2570 2580 2590 2600
Chicken genome Turkey genome	2610 2620 2630 2640 2650 2660 2670 2680 2690 2700
Chicken genome Turkey genome	2710 2720 2730 2740 2750 2760 2770 2780 2790 2800
Chicken genome Turkey genome	2810 2820 2830 2840 2850 2860 2870 2880 2890 2900
Chicken genome Turkey genome	2910 2920 2930 2940 2950 2960 2970 2980 2990 3000
Chicken genome Turkey genome	3010 3020 3030 3040 3050 3060 3070 3080 3090 3100

	3110	3120	3130	3140	3150	3160	3170	3180	3190	3200
	·									
Chicken genome	GAGGTAGGACACGCGGA	AGTGCATCCGCA	GCACATTCA	CAGGGACCAC	TTGGTGCACT	GGGAAGCTCCA	GAGCAGGCC	GGGGGGCGCT	GGAAGGAAGA	ATG
Turkey genome	GA~~GCTACACCCGGAC	GCATATTCCCAG	GGCACTACT	TGGTGCGTAC	GGCAGCTCCA	CAGTAGGTCGC	GTGGACACTGO	GAAGGAAGA	IGAGAAACAGG	G T
	3210	3220	3230	3240	3250	3260	3270	3280	3290	3300
			.					Exc	on 12	
Chicken genome	AGAAAGAGGGTAAAGC	AGAGAGGCTGAG	AATAGAGCG.	AGAGCGGAGA	CTGACAACGG	GTGTGCGATCO	CACAGGGAAC	GTGGGATGG	JATCCTGCAGT	.'GG
Turkey genome	AAACCCAAGAGACTGAC	BAAGAGAGTGAA	AATGGAGAC	TGACAACGAG	TGGGCGATCT	CTCTTTGATTI	GTGAGTGCCZ	ATTCTGCAAG	LATGTCCGGTG	;CA
	3310	3320	3330	3340	3350	3360	3370	3380	3390	3400
	Reverse 2				•••		.			•
Chicken genome	GCATTCCAGAGCATGGC	CACGGC CCCTTG	CAGACCCAC	ACGGGCCGTT	TGACTAGTGC	CCGCTGCGGCC	CGTGGAAGGCC	CGAGGGAGAC/	AGACTACGGG	;GA
Turkey genome	GCCTGGTGCCCTCAGCO	CAGGGGCAGTGC	TGTGCCTGC	TCAACTCCCC	TGCCCTGGTG	CACAGACAAT	AGCAAGGCAC'I	IGTTTGCTCC	CAAACCTCCC	'.GC
	3410	3420	3430	3440	3450	3460	3470	3480	3490	3500
							• • • • • • • •			•
Chicken genome	GAGGCAAAGAAAGAAA	AGAGCGAAAAG	GAAGAAGAG	CAACCAATAA	AGAAGTGAGA	AAACAAGCAA	AGGCAAACCO	GCACGCGAAC	CAGTAGTGAC	'GG
Turkey genome	ACAGCATTCAGCCCAG	ATGTATGAGGGT	AACTTGATC							

	10	20	30	40	50	60	70	80	90	100
7 - han - 6 - ah			.							
Zebraiisn	MSKVESFEESDLRS	J OL D			QILRETLERK		CWW R L	TTVLKAFWKI	C D I DC	PKLET
Takurugu	M.D.RDIN	L.QL.D.	VD.SVF	K T TD	LOKD KE	SREM		RSIIRS. DC TD C		OK
retraduon	M.H.G.IN		• • • • • • • • • • • • • • • • • • • •	••••K•1•1D	· LQKD · · · KI	SKIS M		KD.IKD.		···QK
	110	120	130	140	150	160	170	180	190	200
Zebrafish	VFMNLPKGLKQEVF	QNGNPKLELQA	RSQSGKKRGV	SEKQLTHRTH	HHHSKKSLTS	SSS <mark>G</mark> SKGKLMI	KKTDGAAHSQV	SVGNGVQAVS	STSVQ RA VTVS	AGDLP
Takufugu	LIACRWESKGS	RDEK	SDDQ	TSHIKKRN	. ED. EQPKFI	DKP.DEPG.	SDMYS.TGA.M	GSASVQK.HI	rs.sss	STK
Tetraodon	LITSGS	RDAK	K.SGSQ	TMYIKKRN	.ED.QQPQHE	DKS. EPG.	BD.YS.TGA	VSSLAPKTPI	rL.sss	STK
	010	222	0.20	0.40	050	0.00	070	200	2.0.0	200
	210		230	240	∠50 I I	260	∠/0 I I I	280	290 I I I	300
Zebrafish	DSCGTVEETLTOON	TESCC	AKKCIKVGGE	TYSSCKLDET		TAHTSSHOOR	ZPSSRGIATPC	LOVVVAVLTC	VPOKMTFAVE	CHNDDE
Takufugu	VKHEAS K. H. K.	FG.DEKTSG-T	VRH V V	C.OSE	KRASKA	VESTE.HKG	LTD		AF	V
Tetraodon	VRHEASOK.N.K.	FG.DENTAGET	R.MD.M	DOSE.	KRASKA	VESICGHKG	.PTE		SI	IV
	-			~						
	310	320	330	340	350	360	370	380	390	400
Zebrafish	CAVCKDGGELICCI	OGCPRAFHLSCL	VPPLTSIPRG	rw <mark>rC</mark> QL C QSN	RLKDRTYTH-	VQPPATE	rss <mark>g-</mark> savdfs	FFSS-LSSTS	SLSTVSASSSA	QSMGL
Takufugu	• • A • • • • • • • • • • • • • • • • •	QT	D	P.Q.DW.CGT	.G.RE.TQQI	PLAKSLQ.N	NNAL.V.	s	H.A.T.PTN.	PRN
Tetraodon		QT	DS.I	PGW.KD.	TV.VEKPQEI	VLAKLLQ.N	ANT.LI.	····AA		PRN
	410	4.20	420	4.4.0	450	160	470	490	400	FOO
	410	420	430	440	450	400	470	480	490	U
Zebrafish	OSSDGERVGTRMAC	GTCYLTRGELT	TCPOCLOAYHA	ALCNFPNGRT	RCRNCSRSW	PGNDNSSTC	STOLSOHMS-	DOGLT	SEOLUNRDEN	
Takufugu	C.G. LUSVTEE	V.ROAE.A.T	R.LGSF.	TH.H.K.S	Τ.Τ.SΤΕ	SSAEGEAGS	APVION	MIGHE	/P . PG . HK T	TT.
Tetraodon	R.G. LLSVKEE	.V.00AG.D.T	H.LGVFS	TLPL.K.S	I.SSL.B	SSAEREAES	TDPVLON	TLSHE. DAAN	/P.PG.HK.DI	.IL.
	510	520								

Zebrafish E-SSIDGILQWAFHNISRPLSETQGYFQ Takufugu DQT.F....M...DS.CY. Tetraodon DQP.F...M...DS.CY.

EXON 1	NRB-1	HSR
human	MATDAALRRLLRL	HRTEIAVAVDSAFPLLHALADHDVVPEDKFQ
mouse	MAGGDGMLRRLLRL	HRTEIAVATDSAFPLLHALADHDVVPEDKFQ
opossum	MSSSDQLLKL	YRTEISMAVDDTFPLLHGLADHDVIPEDKFK
chicken	MAKLGVDRDLRHLLKL	HRTEIAMAVDDVFPLLHGLADHDIVPEHIFK
<i>tropicalis</i>	MSERDPSPSSQDLRTLLKM	YRTEIAVAVTDIFPLLHGMMDRELITBERFQ
zebrafish	MSKVES FEESDLRSQLRA	CRTEIAMATHDFFPLLYGLADHNVISEOILR

	human	mouse	opossum	chicken	tropicalis	zebrafish
human	ID	89%	60%	66%	44%	43%
mouse	89%	ID	58%	64%	42%	45%
opossum	60%	58%	ID	62%	46%	45%
chicken	66%	64%	62%	ID	48%	51%
tropicalis	44%	43%	46%	48%	ID	42%
zebrafish	43%	45%	45%	51%	42%	ID

EXON 2 HSR NRB-2

HSR

human mouse opossum chicken tropicalis zebrafish

etl<mark>h</mark>lkekegopoafhallswllt Etl<mark>r</mark>lkekegopoafhallswllt ET DRUKENEGE OM FALLSWIL ET OSLREKDGCHKALHALLSWILD ET LSQ TEREGSHRAFHALLTWILD ET ORVGED SGAOKASHTLETWILD ET LERKKKDGTHKAT YSLLTILD

0	DS	ΤA	ΠI	DF	ŴR	VLE	'KD	YNI	ΞR	Υ <mark>G</mark>	\mathbf{RL}	OР	L.	DS	FΡ	ĸ
R	DS	GĄ	Π	DF	WR	I I I	KD	YNI	ER	YS	RL	HS	īГ	DG	FP	ĸ
R	DS	AS	ΠF	G	WT	VLE	KD	YNI	-ER	Y <mark>G</mark>	RL	Q <mark>A</mark>	I R	SS	FP	ĸ
R	DA	<mark>A</mark> A	VF	DF	WA	VLE	۲KD	YNI	,ER	ΥT	RL	RΡ	LH	SA	FΡ	A
C	DL	PI	ПÇ) <mark>G</mark> i i	ws	LI	STD	Υ <mark>Ι</mark> Ι	NS	ΥP	RL	SG	H	SL:	LF	Ά
Q	Dт	τv	ΓK	(<mark>A</mark> F	wκ	NLC	ĶΕ	YN	C C	ΥP	к	ЕТ	VF	MN	LР	ĸ
_	_			_	_	_			_	_			_	_		_

	human	mouse	opossum	chicken	tropicalis	zebrafish
human	ID	86%	71%	62%	38%	43%
mouse	86%	ID	66%	60%	40%	40%
opossum	71%	66%	ID	64%	45%	41%
chicken	62%	60%	64%	ID	41%	38%
tropicalis	38%	40%	45%	41%	ID	31%
zebrafish	43%	40%	41%	38%	31%	ID

EXON 3

NLS 1

DVDLSQPRKGRK-EPAVPKALVPPPRLETKRKASEEARAAAPAALTPRGTASP DVDLNOSRKGRK-ELAGPKAAVLPPRPPTKRKALEEPRATPATLASKSVSSP DVDLSRSHKGRRVAASAPRLSLRPPVPPLEGRAQPPSSSCLLSCNHA-----EVDLGOQCSSRR-ESPGPTAPT-FORTQGKRKAPEERDGAHMAOPSPOHTTSP VTGSSHHKARR-OPP-TNKPVSHPKPOAKRKAGANKDTFAVYPTRA-----GLKQEVRQNGNPKLELQARSQSGKKRGVSEKQLTHRTHHHHSKKSLTSSS--human mouse opossum chicken tropicalis zebrafish

human chicken tropicalis zebrafish mouse opossum 65% 23% 42% 25% 4% human ID 65% ID 26% 38% 21% 6% mouse 23% 26% ID 13% 17% 6% opossum ID 21% chicken 42% 38% 13% 4% 21% 17% 21% tropicalis 25% ID 0% 6% 4% 0% zebrafish 4% 6% ID

opossum exon 3 plus 5' end of exon 4

EXON	4	NLS	2

human	GSQLK <mark>AKPPKKPESSAEQQRL</mark> PLGN
mouse	GS <mark>HLK</mark> TKPPKKPD <mark>G</mark> NLESQHLPLGN
opossum	GPPHKVKPPKKPE-NPEPPRFPLGN
chicken	GLLAKARTVKRPE-SADTPRTPRTS
tropicalis	GPPAKTKPPRKAE-KPMSLDCPLIQ
zebrafish	GSK <mark>GKLMKKTD-GAAHSQVSVGN</mark>

	human	mouse	opossum	chicken	tropicalis	zebrafish
human	ID	68%	60%	40%	36%	36%
mouse	68%	ID	56%	20%	40%	36%
opossum	60%	56%	ID	33%	50%	29%
chicken	40%	20%	33%	ID	21%	17%
tropicalis	36%	40%	50%	21%	ID	17%
zebrafish	36%	36%	29%	17%	17%	ID

opossum 3' end of exon 4

EXON 5	SAND
human	GIOTMSASVORAVAMSSGDVPGARGAVEGILIQOVFES
mouse	GIQTMAASVQRAVTVASGDVPGTRGAVEGILIQQVFES
opossum	GIRSMSASVQRSVAVAS <mark>SEL</mark> PG <mark>TC</mark> GAVEGVLIKQVFES
chicken	<mark>GSTKAG</mark> SRARDEFCVPAA
tropicalis	APQKIPSVLPVNQNDKKPVSYTISKPPANTGSSI
zebrafish	GVQAVSTSVQRAVTVSAGDIPDSCGTVEEILIQQVIES

	human	mouse	opossum	chicken	tropicalis	zebrafish
human	ID	87%	68%	8%	9%	63%
mouse	87%	ID	71%	8%	9%	63%
opossum	68%	71%	ID	8%	9%	53%
chicken	8%	8%	8%	ID	6%	8%
tropicalis	9%	9%	9%	6%	ID	14%
zebrafish	63%	63%	53%	8%	14%	ID

5

SAND_

human	GGSKKCIQVGGEFYTP <mark>SKFED-SG</mark> SGKNK <mark>ARS</mark> S <mark>GPKPLVRAK</mark> GAQGAAP
mouse	G <mark>R</mark> SKKCIQVGGEFYTP <mark>NKFEDPSGNLKNKA</mark> RS <mark>G</mark> SSLKPVVRAK <mark>GA</mark> QVTIP
opossum chicken	GGSKKCIQVGGEFYTP <mark>G</mark> KFEDPSGKNKTRSPKPPARTKATCAPHH
tropicalis	DRSMOMERSLEAVEKNPUQPLKLTLRPKLISQQ CAKKALKVCGERSSSCKLDFTACAOOTOGOTAHTSSHOODERSS
2001011011	oon need a woon and a second a second of the

	human	mouse	opossum	chicken	tropicalis	zebrafish
human	ID	76%	66%	0%	14%	30%
mouse	76%	ID	64%	0%	16%	28%
opossum	66%	64%	ID	0%	18%	34%
chicken	0%	0%	0%	ID	0%	0%
tropicalis	14%	16%	18%	0%	ID	8%
zebrafish	30%	28%	34%	0%	8%	ID

EXON 7	SAND
human	GGGEARLGQQGSVPAPLALPSDPQLHQ
mouse	GRDEOKVGQQCGVPPLPSLPSEPOVNQ
opossum	GSRAEMQLSQHCSVPATPAQPPELHLHQ
chicken	AEGSPKHLVSHSGEMCVTTYCHLPAPPVHSQEPALYQ
<i>tropicalis</i>	VGSIALSVPAELPQYQ
zebrafish	GLATPCLQVVAVLTCYPQKMTFA-

	human	mouse	opossum	chicken	tropicalis	zebrafish
human	ID	48%	50%	27%	30%	22%
mouse	48%	ID	36%	22%	19%	19%
opossum	50%	36%	ID	30%	25%	7%
chicken	27%	22%	30%	ID	16%	5%
tropicalis	30%	19%	25%	16%	ID	15%
zebrafish	22%	19%	7%	5%	15%	ID

chicken exon 6

EXON 8	PHD-1
human	KNEDECAVCRDGGELICCDGCPRAFHLACL <mark>S</mark> PPL <mark>RE</mark> IP-
mouse	KNEDECAVC <mark>H</mark> DGGELICCDGCPRAFHLACL <mark>S</mark> PPLOEIP-
opossum	RNDDECAVCRDGGELICCDGCPRAFHLACLEPPLTDIPS
chicken	-Q <mark>D</mark> NEDECAVC <mark>G</mark> DGGELICCDGCPRAFHLPCLVPPLPRVPS
tropicalis	SNDDECSVCRDGGELICCDGCPRSFHLSCLVPPLTHIP-
zebrafish	VEHNDDECAVCKDGGELICCDGCPRAFHLSCLVPPLTSIPS

humanID95%85%78%79%76%mouse95%ID82%78%76%76%opossum85%82%ID78%82%83%	hum	nan mouse	human	opossum	chicken	tropicalis	zebrafish
mouse 95% ID 82% 78% 76% 76% opossum 85% 82% ID 78% 82% 83%	man ID	95%	ID	85%	78%	79%	76%
opossum 85% 82% ID 78% 82% 83%	ouse 95%	6 ID	95%	82%	78%	76%	76%
	ossum 85%	6 82%	85%	ID	78%	82%	83%
chicken 78% 78% 78% ID 73% 78%	icken 78%	6 78%	78%	78%	ID	73%	78%
tropicalis 79% 76% 82% 73% ID 80%	picalis 79%	6 76%	79%	82%	73%	ID	80%
zebrafish 76% 76% 83% 78% 80% ID	brafish 76%	6 76%	76%	83%	78%	80%	ID

chicken exon 7

EXON 9		PHD-1_		><	PRR		
human	SGTWRCS	CLQATVQE	VQPRAE	EPRPQPPVE	TP		
nouse			NLSQPE	REPUBLICAD			
chicken	GTWOCS	SCV <mark>AKL</mark> GRLRE	ADTAAEQLPA	VPD <mark>KE</mark> PHGAQ	PGGGHGSTCG	CFSSISAPQR	CPTRDGDPG
tropicalis		CNTGRPMS	D <mark>GQPE</mark>	MGETTGLSKK			
2601011011	01 Mixeo			111 1 02			
	h			abialcan	traniaglia	Tabrafiab	

	human	mouse	opossum	chicken	tropicalis	zebrafish
human	ID	56%	32%	15%	21%	18%
mouse	56%	ID	38%	16%	29%	18%
opossum	32%	38%	ID	9%	27%	19%
chicken	15%	16%	9%	ID	12%	9%
tropicalis	21%	29%	27%	12%	ID	30%
zebrafish	18%	18%	19%	9%	30%	ID
	-					

chicken exon 8

EXON 10	PRR	NRB-3
human	LPPGLRSAGEEVRG2PGBPLAGMDTTLVYKHLPAPPGAAPI	PGLDSSALHPTLCVGPEGQQ-
mouse	ILVGLRSASEKTRG2SRBLKASSDAAVTYVNLLAPHPAAPI	LEPSALCPLLSAGNEGRPG
opossum	ALLGLRPARTQEKNDTEBPSPGLVATFAFKQP-LPIAPGPSLM	PAIPLATCOPLONFGSERQQ-
<i>tropicalis</i>	PSQESAEAQSQKRMKVCEMLADKHDA-IIQKSSSIQN	QIYPQIVAQPETCPKPTART-
zebrafish	PPATETSSGSAVDFSFFSSLSSTSI	STVSASSSAQSIGLQ

	human	mouse	opossum	tropicalis	zebrafish
human	ID	48%	34%	8%	13%
mouse	48%	ID	21%	6%	13%
opossum	34%	21%	ID	10%	15%
tropicalis	8%	6%	10%	ID	4%
zebrafish	13%	13%	15%	4%	ID

Zebrafish13%15%4%IDno chicken analog, tropicalis exon 10 plus 5' end of 11 (rest of 11 has no non tropicalis analog)

EXON 11	PHD-2/RING
human	NLAP <mark>G</mark> ARCGVCG-DGTDVLRC <mark>THCAAAFHWRCHFPA</mark> GTSRP-
mouse	PAPSARCSVCG-DGTEVLRCAHCAAAFHWRCHFPTAAARP-
opossum	QNLSAEDTCGVCQ-GSEDLLHCAQCSRVFHWHCYFPANSSRTG
zebrafish	-SDGERVGIRMACGICYLTRGELITCPQCLQAYHALCNFPK

	human	mouse	opossum	zebrafish
human	ID	75%	45%	22%
mouse	75%	ID	33%	22%
opossum	45%	33%	ID	23%
zebrafish	22%	22%	23%	ID

_

no chicken or tropicalis analogous exon

EXON 12

_PHD-2/RING__

human mouse opossum chicken zebrafish

GTGLRCRSCS <mark>GDVT</mark> PAP	VEGVLAPSP-ARLAPGPAK
GTNLRCKSCSADSTPTP(GTPGEAVPTSGPRPAPGLAKVG
GM-VKCKPCSEVPVL	TAEEDALSSGVSALESVK
GL-WLCSSCTGIPETC	GSHESSAAAG-ERVLLAA
GR-TRCRNCSRSWGPGNI	DNSSTCRSLQ

	human	mouse	opossum	chicken	zebrafish
human	ID	51%	22%	22%	19%
mouse	51%	ID	18%	18%	15%
opossum	22%	18%	ID	19%	18%
chicken	22%	18%	19%	ID	12%
zebrafish	19%	15%	18%	12%	ID

chicken exon 9, no tropicalis analog

EXON 13		CTD	NRB-4
human	DDT	AS <mark>H</mark> EP <mark>A</mark> LHR	DDLESLLSE
mouse	D <mark>DS</mark>	AS <mark>H</mark> DPVLHR	DDLESLLNE
opossum	MIGDS	S <mark>GK</mark> ET IUNK	DELDSLLGE
chicken	LENGS	ASSDPM <mark>S</mark> SR	EELDALL SE
tropicalis	VPAEV	A <mark>G</mark> SNLTLSR	H <mark>ELEC</mark> LIAE
zebrafish	LSQ <mark>HM</mark> SDQGL	TPSEQLUNR	DEMDSVM <mark>G</mark> E

	human	mouse	opossum	chicken	tropicalis	zebrafish
human	ID	81%	39%	39%	30%	25%
mouse	81%	ID	39%	43%	30%	21%
opossum	39%	39%	ID	30%	26%	36%
chicken	39%	43%	30%	ID	35%	18%
tropicalis	30%	30%	26%	35%	ID	18%
zebrafish	25%	21%	36%	18%	18%	ID

chicken exon 10, tropicalis exon 12

EXON 14 _____

human mouse opossum chicken *tropicalis* zebrafish HTFDGILQWAIQSMARPAA----PEPS HSFDGILQWALQSMSRPLAETP-PFSS NSFDGILQWALQNISRPLSETQSFFS-GTWDGILQWAFQSMARPLADPHCPFD-SSFDCFLQWAFQNISRPVQ-----SSTDGILQWAFENISRPLSETQGYFQ-

CTD

	human	mouse	opossum	chicken	tropicalis	zebrafish
human	ID	73%	44%	63%	39%	37%
mouse	73%	ID	67%	59%	42%	56%
opossum	44%	67%	ID	46%	50%	73%
chicken	63%	59%	46%	ID	35%	50%
tropicalis	39%	42%	50%	35%	ID	50%
zebrafish	37%	56%	73%	50%	50%	ID