Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/dci

Expressed IgH μ and τ transcripts share diversity segment in ranched *Thunnus orientalis*

CrossMark

^a Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA

^b Department of Wildlife and Fisheries Sciences, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA ^c Schillinger Genetics, 4401 Westown Parkway Suite 225, West Des Moines, IA 50266, USA

ARTICLE INFO

Article history: Received 2 September 2013 Revised 7 October 2013 Accepted 30 October 2013 Available online 11 November 2013

Keywords: Immunoglobulin IgZ/T Isotype exclusion Evolution Tuna

ABSTRACT

It is now appreciated that in addition to the immunoglobulin (Ig)M and D isotypes fish also make the mucosal IgT. In this study we sequenced the full length of Ig τ as well as μ in the commercially important *Thunnus orientalis* (Pacific bluefin tuna), the first molecular analysis of these two Ig isotypes in a member of the order Perciformes. Tuna IgM and IgT are each composed of four constant (CH) domains. We cloned and sequenced 48 different variable (VH) domain gene rearrangements of tuna immunoglobulins and grouped the VH gene sequences to four VH gene segment families based on 70% nucleotide identity. Three VH gene families were used by both IgM and IgT but one group was only found to be used by IgM. Most interestingly, both μ and τ clones appear to use the same diversity (DH) segment, unlike what has been described in other species, although they have dedicated IgT and IgM joining (JH) gene segment. We complemented this repertoire study with phylogenetic and tissue expression analysis. In addition to supporting the development of humoral vaccines in this important aquaculture species, these data suggest that the DH–JH recombination rather than the VH–DH recombination may be instructive for IgT versus IgM/D bearing lymphocyte lineages in some fish.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The immunoglobulin (Ig) superfamily-based adaptive immune system evolved in cartilaginous fish (sharks and skates) and is maintained in all jawed vertebrates (Flajnik and Rumfelt, 2000). One of the major characteristics of this adaptive immune system is the production of a repertoire of antibodies through somatic V(D)J recombination of the loci that encode them. While mammals possess five functionally distinct Ig isotypes (IgM, IgD, IgG, IgA and IgE), teleost fish have only three: IgM, IgD and IgT (Danilova et al., 2005a,b; Fillatreau et al., 2013; Hansen et al., 2005a; Wilson et al., 1997).

IgT was concomitantly discovered in trout (*Oncorhynchus mykiss*) and zebrafish (*Danio rerio*, where it was given the appellative IgZ) and IgT or forms of Ig with IgT domains have since been described in fugu (Fugu rubripes) (Savan et al., 2005b), carp (Cyprinus carpio) (Savan et al., 2005a), and stickleback (Gasterosteus aculeatus) (Gambon-Deza et al., 2010). IgT perhaps exists in most teleost groups, although it has yet to be found in catfish (Bengten et al., 2006; Salinas et al., 2011) and medaka (Magadan-Mompo et al., 2011). So far IgT is an isotype restricted to bony fish, and sequence characteristics (Hansen et al., 2005a), gut localization and functional work (Zhang et al., 2010) have suggested that it is a dedicated mucosal isotype (Zhang et al., 2011), functionally analogous but not orthologous with IgX/A of tetrapods (Mashoof et al., 2013). IgT was found to be expressed in gill of Chinese perch (Siniperca chuatsi) (Tian et al., 2009), IgT positive cells were identified in the epithelium of trout gill lamellae (Olsen et al., 2011), and clonal IgT responses were induced to trout viral pathogens (Castro et al., 2013), all further supporting the idea of this isotype filling a mucosal role in teleost humoral adaptive immunity. The IgT encoding DH-IH-CH elements are located 5' of the μ and δ DH-IH-CH regions in the fish genomes in which it has been studied, with most or all VH genes 5' to the τ block (Danilova et al., 2005a,b; Gambon-Deza et al., 2010; Savan et al., 2005b). Although class switch recombination has been described in shark (Zhu et al., 2012) and fish activation-induced cytidine deaminase (AID) is competent to induce somatic hypermutation and class switch in mammalian

^{*} Corresponding author. Address: Texas A&M University, Mailstop 4467, College Station, TX 77843, USA. Tel.: +1 979 845 4207, mobile: +1 305 299 2522; fax: +1 979 862 1088.

E-mail addresses: smashoof@cvm.tamu.edu (S. Mashoof), cpohlenz@tamu.edu (C. Pohlenz), pchen@cvm.tamu.edu (P.L. Chen), tdeiss@cvm.tamu.edu (T.C. Deiss), dgatlin@nature.tamu.edu (D. Gatlin III), abuentello@schillgen.com (A. Buentello), mcriscitielllo@cvm.tamu.edu (M.F. Criscitiello).

⁰¹⁴⁵⁻³⁰⁵X/\$ - see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.dci.2013.10.015

cells (Wakae et al., 2006), it does not appear that teleosts employ this for Ig heavy (H) chain isotype switching, instead they use deletional VH(DH)JH rearrangement to remove τ in IgM and IgD expressing cells and differential RNA splicing to control expression of IgM and IgD (Hikima et al., 2011), the τ/μ rearrangement appearing to have influence on lineage commitment similarly to the mechanism operating at the T cell receptor $\alpha\delta$ locus.

We recently turned our attentions to the expressed IgH transcripts of the Pacific bluefin tuna (*Thunnus orientalis*). *Thunnus* species are the most valuable global aquaculture product (Ottolenghi, 2008), yet infections from several groups of parasites plague high intensity tuna mariculture ranches (Fromentin and Powers, 2005), impeding the industry from optimal relief of fishing pressures upon wild adult stocks. In addition to their economic importance, the extreme physiological specializations of these migratory apex predators made their Ig of interest to us. Tuna are among the fastest fish and have countercurrent heat exchangers that minimize convective heat loss to maintain a form of endothermy distinct from that of birds and mammals (Block et al., 2001; Jusup et al., 2011). Specifically, we were curious whether tuna Ig harbored any special adaptations evident in their primary amino acid sequence to this rare form of fish endothermy.

Here we report the first full-length μ and τ sequences from tuna. We have analyzed representative clones of the expressed variable domain repertoire of these isotypes, performed phylogenetic analysis of the IgH genes of this modern teleost, and analyzed their relative expression in tuna primary and secondary lymphoid tissues, including the mucosal gill. Our results demonstrate that these fish employ the same Ig VH gene families as other teleosts, can use the same VH genes in both IgM and IgT heavy chains, make diverse IgH complementarity determining region (CDR)3 regions, and surprisingly employ the same DH segment in both τ and μ rearrangements in what appears to be a previously undescribed mechanism of B cell isotype determination.

2. Methods

2.1. Animals and collection of tissues

Sample tissues of spleen, gill and kidney from ranched *T. orientalis* were collected during the regular slaughter process from two different commercial tuna facilities located off the coast of Ensenada, Baja California, Mexico. At the time of harvest, fish weight and fork length were 16.2 ± 6.5 kg and 96.3 ± 14.3 cm, respectively. Samples were placed in RNAlater (Qiagen, Valencia CA), frozen in liquid nitrogen, shipped to Texas A&M on dry ice and stored at -80 °C until further use.

2.2. Total RNA isolation and cDNA synthesis

Total RNA was purified from spleen, gill and head kidney (pronephros, or anterior kidney) (35 mg from each tissue) using the RNeasy Mini Kit (Qiagen) according to the manufacturer's instruction. The quantity and quality of the RNA samples were assessed by NanoDrop 2000c spectrophotometer (Thermo Scientific, Wilmington, DE) and Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA) respectively. Message representation of RNA was assessed by PCR of common (β -actin) and less common transcripts (TNF- α , IL1- β), using previously published primer sets (Mladineo and Block, 2009). The GeneRacer kit (Life Technologies, Grand Island, NY) with GeneRacer oligo dT and gene specific primers was used to produce 5' rapid amplification of cDNA ends (RACE) PCR products. Pools of 3' RACE products were synthesized by Superscript III First-Strand Synthesis SuperMix kit (Life Technologies) using the oligo dT primer.

2.3. IgH RACE PCR, cloning, and sequencing

5' and 3' RACE products were amplified by standard PCR using various combinations of 5' GeneRacer (as forward primer in 5' RACE), Oligo dT (as reverse primer in 3' RACE), and specifically designed primers for the conserved regions encoding the C domains of T. orientalis IgM and IgT (as forward or reverse for 3' RACE or 5' RACE, respectively). Primers are listed in Supplemental Table 1. The PCR conditions were as follows: one cycle of 95 °C for 2 min, 35 cycles of 95 °C for 30 s, 50–53 °C for 30 s, 72 °C for 2 min, followed by one cycle of 72 °C for 7 min. The amplicons were purified from a 0.8% agarose gel after electrophoresis in tris/acetic acid/EDTA (TAE) buffer, cloned into pCR II vector with the TOPO TA cloning kit (Life Technologies), and transformed into chemically competent TOP10 Escherichia coli cells (Invitrogen). Colonies were picked based on blue/white screening produced by X-Gal (Sigma-Aldrich, Saint Louis, MO). The plasmid DNA was purified using Zvppy Plasmid Miniprep kit (Zymo Research Corporation, Irvine, CA) and was digested with EcoRI (Promega, Madison, WI) to identify clones with inserts. Products for sequencing were amplified using either M13 forward or reverse primers, purified using ABI BigDye × terminator purification kit (Life Technologies), and sequenced by the DNA Technologies Core lab of the Department of Veterinary Pathobiology at Texas A&M University.

2.4. Sequence analysis of μ and τ gene rearrangements in Pacific bluefin tuna

BLASTX (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and visual inspection were used to identify the Ig isotype as well as VH, JH and CH sequences of tuna amplicons based upon homology to those from representative fish and other vertebrates. The amino acid sequences were blasted to discriminate the VH segments and CH domains. SignalP 4.1 was used to determine the leader peptides (Emanuelsson et al., 2007). Three prediction methods concurred upon the cleavage site of the representative µVH (after the 18th residue) and were in less agreement for τVH (after the 20th residue) as shown in Supplemental Figs. 1 and 2. Sequences were translated with Expasy translate tool (http://web.expasy.org/translate/), and the Clustal W program in Bioedit was employed to align amino acid sequences (http://www.mbio.ncsu.edu/ bioedit/bioedit.html) for figures. Sequences were managed and assembled in Bioedit and have been deposited in Genbank under accession numbers KF713322-KF713372. CDR3 length was calculated using the "CDR3 length = exclusive number of amino acids from C (of VH segment $Y \times C$) to F (of JH segment FG \times G)" IMGT formula (Lefranc et al., 2003).

2.5. Phylogenetic studies

Amino acid alignments were made with ClustalW employing gap opening penalties of 10 and gap extension penalties of 0.1 for pairwise alignments, then 0.2 for multiple alignments using a Dayhoff matrix based method (Schwarz and Dayhoff, 1979). Phylogenetic trees were constructed using MEGA 5 software (Tamura et al., 2011). Neighbor joining trees using the substitution method of Jones et al. (1992) and pairwise deletion of empty positions were constructed from alignments of VH and CH domain sequences. Trees were bootstrapped 1000 times (Koichiro Tamura et al., 2011) and were viewed and adjusted using the Treeview Software (Page, 2002).

2.6. Real time quantitative PCR

Oligo-dT transcribed cDNA samples from spleen, gill and anterior kidney were assayed for levels of μ and τ message using β -ac-

Fig. 1. Four VH families used by tuna IgH. Amino acid alignment of VH segment encoded sequences found within *T. orientalis* μ and τ cDNAs. Clone numbers are shown to the left and VH family designations are shown to the right. VH gene segment families were ascribed based upon 70% nucleotide identity in a pairwise matrix (Supplemental Fig. 2). Gaps introduced into the alignments are indicated by dashes ("-") and identity to the first sequence is indicated by a period (".") in the column. CDR1 and CDR2 are indicated below the alignment. If clone contained CH region encoding region, μ or τ is indicated at left of sequence after the clone name.

tin as a constitutively expressed control. Real-time PCR reactions were performed using 25 and 50 ng of cDNA with SYBR Advantage qPCR Premix (Clontech, Mountain View, CA) per the manufacturer's instructions. Primers were designed to span across introns. Using a Roche LightCycler 480 a three-step thermal cycling program was followed: 1 cycle at 95 °C for 5 min, then 45 cycles of 95 °C for 10 s, then 60 °C for 5 s, then 72 °C for 5 s. The Roche Light-Cycler software was utilized for raw data acquisition and calculation of Ct (threshold cycle) values. Changes in gene expression were estimated using the $2^{-\Delta\Delta Ct}$ method (Livak and Schmittgen, 2001), with β -actin utilized as the stable reference gene for all experimental situations. The fold changes in gene expression were calculated with respect to the expression level of the genes in the anterior kidney (the primary B lymphopoietic tissue of bony fish).

3. Results

3.1. Characterization of μ cDNA of T. orientalis

The initial full length tuna μ was cloned and sequenced using a cDNA RACE library that was obtained from RNA pooled from several tuna anterior kidney, spleen and gill samples. The secretory tuna μ sequence shown in Supplemental Fig. 1 is an 1827 bp open reading frame which encodes a 609 amino acid protein containing a leader peptide of 18 residues, one Ig VH and four CH domains.

The primary amino acid sequence showed two cysteine residues (and intervening tryptophan) conserved for intra-domain disulfide bond formation present in each of the Ig domains with the cysteines being spaced by approximately 70 residues in the VH domain and 60 in the CH domains. The amino-terminal cysteine in the CH1 domain forms an interdomain disulfide bond between the IgH chain to the IgL chain. The potential N-linked glycosylation site near the carboxyl terminus of the IgM chain was found at this position of the tuna IgM (Danilova et al., 2005a,b).

3.2. Characterization of tuna IgT

While sequencing 3' RACE PCR products employing VH primers designed from μ clones we found other clones with Ig CH region amino acid sequences distinct from IgM, although they often shared a VH domain highly homologous with μ clones. The CH1 domain of these clones shares 56% amino acid identity with the CH1 of *S. chuatsi*. More primers allowed the complete cloning of the IgT encoding cDNAs, with CH3 proving to be even more definitively of the isotype (60% identical amino acids to *S. chuatsi*) (Supplemental Fig. 2).

The secretory tuna τ cDNA is composed of 1614 base pairs translating to 539 amino acids forming a leader peptide, VH domain and four CH domains. As in tuna IgM, two conserved cysteine residues and one tryptophan were identified in the VH and each CH

		Tyr	Cys		TATACGGG	GGGGGGTA	CTGGG		Gly	Gly		
1	VH1	TATTA	CTGT	GCCAGA	CCCCC <mark>CG</mark> T	AGTAG·		- CGCTGTTTTTGACTAC	TGG <mark>GGA</mark> A.	AAGGCACG	J1	μ
2	VH1	TATTA	C <mark>TG1</mark>	GCCAGA	AGAGA	GGGG TACCO	G	ATTGACTAC	TGG <mark>GGA</mark> A.	AA <mark>GGA</mark> ACA	J8	μ
3	VH1	TATTA	C <mark>TG1</mark>	GCCAGAGACCG		GGCGTAC	AACGACGGCGCGC	TTGACTAC	tgg <mark>gga</mark> aj	AA <mark>GGA</mark> ACA	J6	μ
4	VH1	TAT TA	C <mark>TG1</mark>	GCCAGAGGATAC	CAGCTACGG	AGTGGCG	\	- CTGGGCTTTTGACTAC	TGG <mark>GGA</mark> A.	AA <mark>GGC</mark> ACT	J4	μ
6	VH1	TAT TA	C <mark>TG1</mark>	GCC	TCCCGF	TCAA <mark>GTA</mark> T	TTA	- CTATGCTTTTGACTAC	TGG <mark>GGG</mark> A	AA <mark>GGC</mark> ACG	J3	μ
7	VH1	TAT TA	C <mark>TG1</mark>	GCCAGAGACCG	CTCCACA	AGT <mark>GGGT</mark> GO	3G	TTTGACTAC	TGG <mark>GGA</mark> A.	AA <mark>GGG</mark> ACC	J5	μ
9	VH1	TAT TA	C <mark>TG1</mark>	GCCAGGC	CGCGAT <mark>CGGG</mark>	<mark>GGG</mark> AG		-AGATGCTTTTGACTAC	TGG <mark>GGA</mark> A.	AA <mark>GGC</mark> ACG	J1	μ
10	VH1	TAT TA	C <mark>TG1</mark>	GCCAGAGA	A <mark>AGGO</mark>	GTAA ·		-CGATGCTTTTGACTAC	TGG <mark>GGA</mark> A.	AA <mark>GGC</mark> ACG	J1	μ
11	VH1	TATTA	C <mark>TG1</mark>	GCCAGAG	<mark>C</mark> GGG	GGGGCTGGC	3GC	TTTGACTAC	TGG <mark>GGA</mark> A.	AA <mark>GGA</mark> ACA	J6	μ
12	VH1	TAT TA	C <mark>TG1</mark>	GCCAGCAACCCC	GTATACGGG	GGGTCCGGG	TGAC	TACTTTGACTAC	TGG <mark>GGA</mark> AJ	AA <mark>GGG</mark> ACT	J5	μ
13	VH1	TATTA	C <mark>TG1</mark>	GCCAGAGACC	CCC <mark>C</mark>	GGGGGGTA	T	-CTGGGCTTTTGACTAC	TGG <mark>GGA</mark> AJ	AA <mark>GGC</mark> ACT	J4	μ
14	VH1	TAT TA	C <mark>TG1</mark>	GCCAGAGAC	<mark>ATACGG</mark> G	GGGGTCCG-		-CGATGCTTTTGACTAC	TGG <mark>GGA</mark> AJ	AA <mark>GGC</mark> ACG	J1	μ
15	VH1	TAT TA	C <mark>TG1</mark>	GCCAGAA1	CCCGGCAC	GGGGGGTA	CCTACGGC	TTTGACTAC	TGG <mark>GGA</mark> A.	AA <mark>GGA</mark> ACA	J7	μ
16	VH1	TATTA	C <mark>TG1</mark>	GCCAGAAGGAG	GCGGGTATAC	GGGGGGTC	A	- CTGGTCTTTTGACTAC	tgg <mark>gga</mark> al	AA <mark>GGC</mark> ACT	J4	μ
17	VH1	TAT TA	C <mark>TG1</mark>	GCCAGG	-CGATC <mark>CGGG</mark>	<mark></mark>		-CGATGCTTTTGACTAC	TGG <mark>GGA</mark> AJ	AA <mark>GGC</mark> ACG	J1	μ
31	VH1	TATTA	C <mark>TG1</mark>	GCCAGAG	CCGGTG	GCA <mark>GGT</mark>		ATGCTTTTGACTAC	tgg <mark>gga</mark> al	AA <mark>GGC</mark> ACG	J1	μ
33	VH1	TATTA	C <mark>TG1</mark>	GCCAAAG	GA <mark>GC</mark>	GGACGGC0	GCTAC	TTTAACTAC	tgg <mark>gga</mark> al	AA <mark>GGG</mark> ACC	J5	μ
41	VH1	TATTA	C <mark>TG1</mark>	GCCAGAG		GGGG <mark>A</mark> (TGGAGCCGCGC	TACTTTGCCTAC	tgg <mark>gga</mark> al	AA <mark>GGG</mark> ACC	J5	μ
42	VH1	TATTA	C <mark>TG1</mark>	GCCAGGCAGAG	CTCTACGG	GCACTA-		CTTTGACTAC	tgg <mark>gga</mark> al	AA <mark>GGA</mark> ACA	J6	μ
51	VH1	TATTA	C <mark>TG1</mark>	GCCAGA	TCAG <mark>CGGG</mark>	GGAATCCO	GTCAT	TTTGCCTAC	TGG <mark>GGT</mark> C(GT <mark>GGG</mark> ACT	J9	τ
53	VH1	TATTA	C <mark>TG1</mark>	GCCAGA	CTCGGA	ACT <mark>GGGT</mark> GO	CCTTTTT	TTTGAGTAC	TGG <mark>GGT</mark> C(gt <mark>ggg</mark> act	J9	τ
54	VH1	TATTA	C <mark>TG1</mark>	GCCAGA		ATGTAC	TGGGGCGTC	TTTGACTAC	TGG <mark>GGT</mark> C(GT <mark>GGG</mark> ACT	J9	τ
55	VH1	TATTA	C <mark>TG1</mark>	GCCTAGA	ACTTO	CT <mark>GGGGT</mark> GC	CGGCCTTT	TATTTTGACTAC	TGG <mark>GGT</mark> C(GT <mark>GGG</mark> ACT	J9	τ
56	VH1	TATTA	C <mark>TG1</mark>	GCCAGAGACCG	7	A <mark>GGGGG</mark> CCC	BACGA	TATTTTGACTAC	TGG <mark>GGT</mark> C(GT <mark>GGG</mark> ACT	J9	τ
5	VH2	TATTA	T <mark>TGC</mark>	GCGCGTGAT		GGCTATCO	TGGCTATTATGAA	TTTGATTAT	tgg <mark>ggc</mark> aj	AA <mark>GGC</mark> ACC	J6	μ
52	VH2	TATTA	C <mark>TG1</mark>	GCCAGA		CTTGTAC	TGGGAGAATAT	TATTTTGACTAC	TGG <mark>GGT</mark> C(GT <mark>GGG</mark> ACT	J9	τ
18	VH3	TATTA	T <mark>TGI</mark>	GCTCGAC	<mark>(</mark>	GGGGGGTA	GAGC	- CTATGCTTTTGACTAC	tgg <mark>cgg</mark> ai	AA <mark>GGC</mark> ACG	J2	μ
19	VH3	TATTA'	T <mark>TGT</mark>	GCTCGAGAC	<mark>CGG</mark> G	GGCGGGA1	GC	TTTTGACTAC	tgg <mark>gga</mark> al	AA <mark>GGC</mark> ACG	J1	μ
20	VH3	TATTA	T <mark>TGC</mark>	GCTCGAGACTATAT	CTATACGGG	GAACAAT		GGTTTTGACTAC	tgg <mark>gga</mark> al	AA <mark>GGC</mark> ACG	J1	μ
21	VH3	TATTA'	T <mark>TGT</mark>	GCTCGAGACTZ	ACTACGAT <mark>GO</mark>	GCGCCGC-		GGCTTTGACTAC	tgg <mark>gga</mark> al	AA <mark>GGA</mark> ACA	J6	μ
22	VH3	TATTA'	T <mark>TGT</mark>	GTTCGAG	GCTCCF	AGT <mark>GGGT</mark> GO	GCCTAC	TTTGCCTAC	tgg <mark>gga</mark> al	AA <mark>GGG</mark> ACC	J5	μ
27	VH3	TATTA'	T <mark>TGT</mark>	GCTCGAG		<mark>GGGGT</mark> CO	CCG	CTTTGACTAC	tgg <mark>gga</mark> al	AA <mark>GGA</mark> ACA	J6	μ
28	VH3	TATTA'	T <mark>TGT</mark>	GCCCGAGACAC	CTTCCG <mark>CGGG</mark>	TGGCGAG	·	ACTTTGACTAC	tgg <mark>gga</mark> al	AA <mark>GGA</mark> ACA	J6	μ
30	VH3	TATTA'	T <mark>TGT</mark>	GCTCGAG	GATCAGTGO	GT <mark>GGGT</mark> GC	CCCCA	CTTTGACTAC	tgg <mark>gga</mark> al	AA <mark>GGA</mark> ACA	J6	μ
32	VH3	TATTA'	T <mark>TGT</mark>	GCTCGAGATAGG	GAGC TACGG	AGCAACA	T	GCTTTTGACTAC	tgg <mark>gga</mark> al	AA <mark>GGC</mark> ACG	J1	μ
43	VH3	TATTA'	T <mark>TGT</mark>	GCTCGAGAGGAGGGG	CTCTACCGGG	AAC		TTTGCCTAC	tgg <mark>gga</mark> al	AA <mark>GGG</mark> ACC	J10	μ
44	VH3	TAT TA	T <mark>TG1</mark>	GCTCGAG	C <mark>CGGG</mark>	GACTGGA	ATAGCGGAGGATTG	GCTTTTGACTAC	tgg <mark>ggg</mark> aj	AA <mark>GGC</mark> ACG	J1	μ
45	VH3	TATTA'	T <mark>TGT</mark>	GCTCG	<mark>- GG</mark> G	GCCAAAT	ACTACGGTGCTC	TTGACTAC	tgg <mark>gga</mark> al	AG <mark>GGT</mark> ACA	J11	μ
46	VH3	TATTA'	T <mark>TGT</mark>	GCTCGAGAC			TAC	TTTGACTAC	tgg <mark>gga</mark> al	AA <mark>GGG</mark> ACC	J10	μ
47	VH3	TATTA'	T <mark>TGT</mark>	GCTCGAGATAGG	GAGC TACGGO	AGTAACA	XT	GCTTTTGACTAC	tgg <mark>gga</mark> al	AA <mark>GGC</mark> ACG	J 4	μ
48	VH3	TAT TA	T <mark>TGI</mark>	GCTCGAGGATACA#	ATACACT <mark>GGC</mark>	GGGGGGAGT	CGGTCGTCTACTA	CTTTGACTAC	tgg <mark>gga</mark> al	AA <mark>GGA</mark> ACA	J6	μ
49	VH3	TATTA	C <mark>TG1</mark>	GCCAGAGAGCGGCC	CTACCG <mark>CGGG</mark>	CTAC		TTTGCCTAC	TGG <mark>GGA</mark> A.	AA <mark>GGG</mark> ACC	J5	μ
57	VH3	TATTA	C <mark>TGC</mark>	GCCAGAG	-T G	GA <mark>GGGT</mark> C	AGTCT	TTTGACTAC	TGG <mark>GGT</mark> C(gt <mark>ggg</mark> act	J9	τ
59	VH3	TATTA'	T <mark>TGT</mark>	GCTCGAGAC		<mark></mark> GTAC	CC	TTTGACTAC	TGG <mark>GGT</mark> C(gt <mark>ggg</mark> act	J9	τ
60	VH3	TAT TA	T <mark>TGT</mark>	GCTCGAG	TACT	GGGCAAT		ATTTTGACTAC	TGG <mark>GGT</mark> C(gt <mark>ggg</mark> act	J9	τ
61	VH3	TAT TA	T <mark>TG1</mark>	GCTCGAGAC	TACACGG	GGGGGGGGGG- ·		TTTTGACTAC	TGG <mark>GGT</mark> C	gt <mark>ggg</mark> act	J9	τ
62	VH3	TAT TA	T <mark>TG1</mark>	GCTCGAGAC		GGGGGGTT	GTGGG	ATTTTGACTAC	TGG <mark>GGT</mark> C	gt <mark>ggg</mark> act	J9	τ
29	VH4	TATTA	C <mark>TG1</mark>	GCCAGAGCT	C1	TATGGCAAG	T	TGCTTTTGACTAC	tgg <mark>ggg</mark> aj	aa <mark>ggc</mark> acg	J2	μ
			v	N	I/P	D	N/P		J			

Fig. 2. Tuna VH(DH)JH junctional diversity. Nucleotide alignment arranged by VH family VH(DH)JH junctional region. Clone names and VH family are denoted on the left, JH gene and CH region is given to the right. Conserved tyrosine and cysteine codons of $Y \times C$ motif of VH segment as well as $G \times G$ glycines of JH gene are highlighted in yellow. Predicted DH segment is highlighted in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

domain which are important for folding of the β -sandwich Ig domains. There is also one conserved cysteine in the CH1 domain which forms a disulfide covalent linkage between the IgH chain to the IgL chain. The secretory tail of tuna IgT is composed of 12 amino acids.

3.3. IgH μ and τ VH, DH and JH segments

The same cDNA pools were used to examine tuna IgH μ and τ VH(DH)JH rearrangement diversity. In total 50 different sequences encoding VH domains (Fig. 1) that possessed full or partial unique VH regions were cloned, 36 spliced to μ CH regions and 11 with τ (three contained complete VH regions but were incompletely rearranged or did not splice to a CH). Based on percent identity the VH segment sequences were divided into four separate families of IgH V genes. Members of each family were more than 70% identical in their nucleotide sequences (Brodeur and Riblet, 1984; Pascual and Capra, 1991) (Supplemental Fig. 3). Analysis of the carboxy-terminal portion of the VH domains gave insight into the DH and JH gene segments used to rearrange mature VH exons. We predicted 11 different JH segments used in these clones and one DH segment (TATACGGGGGGGGGGTACTGGG) could be identified in the 48 unique CDR3 encoding rearrangements analyzed (Fig. 2). The one DH segment apparently was employed by both isotopes, as various stretches of the sequence (including portions at each end) are found in both μ and τ clones. The predicted DH germline nucleotide contribution to the final expressed CDR3 encoding sequence ranges from 3 to 10 with a mean of 5.5 base pairs. All three reading frame of the D segment were used (Fig. 3). The τ clones all used a dedicated JH segment (J9).

IgH CDR3 is the crucial loop in the paratope of most antibody antigen interactions. This sample of the tuna Ig heavy chains expressed at the mRNA level allowed an initial analysis of the length of IgH CDR3 of μ and τ . Table 1 shows that tuna μ clones display a broader range of CDR3 lengths (from 9 to 18aa) as well as an average of one amino acid longer CDR3 length than those found in tuna τ .

3.4. IgM and IgT CH regions of tuna

The tuna IgM CH region amino acid sequence showed the most identity to the mandarin fish (*S. chuatsi*, also known as the Chinese perch and also a member of the Order Perciformes) with 53.6% and then to the rainbow trout with 39.8% identity and presented the least with chicken (23.8% identity) amongst the sequences we included in our analysis (Fig. 4). The tuna IgT CH region has the highest identity also to that of the mandarin fish with 52.5% and the least to grass carp with 20.4% (Fig. 5). Unlike the cyprinid grass carp and zebrafish, the CH3 domain of tuna IgT conforms to the canonical immunoglobulin domain fold with cysteines and tryptophans in positions common for β -sandwich tertiary structure.

3.5. Phylogenetic analysis

To assess the phylogenetic relationship of the tuna Ig VH gene segments with those of other teleosts we created dendrograms

1	VH1	YYCARSPRSSAVFDYWGKGTMVTVTS.	A J1	2 M
10	VH1	YYCARERGNDAFDYWGKGTMVTVTS.	A J1	2 M
9	VH1	YYCARRDRGRDAFDYWGKGTMVTVTS	A .T1	2 M
14	VH1	YYCARDTROVRDAFDYWGKGTMVTVTS	A .T1	2 M
17	VH1	YYCARRSCCDAFDYWCKCTMVTVTS	A .T1	2 M
32	VH3	YYCARDRSYGSNNAFDYWGKGTMVTVTS	A .T1	з м
44	VH3	YYCARAGDWNSGGIAFDYWGKGTMVTVTS	A .T1	з м
19	VH3	YYCARDRGRDAFDYWGKGTMVTVTS.	A J1	2 M
20	VH3	YYCARDYIYTGNNGFDYWGKGTMVTVTS.	A J1	<u>1</u> м
31	VH1	YYCARAGGRYAFDYWGKGTMVTVTS	A .T1	<mark>1</mark> м
29	VH4	YYCARA	A .T2	1 M
18	VH3	YYCARRGVRAYAFDYWGKGTMVTVTS	A J2	<u>1</u> м
6	VH1	YYCASRSSIYYAFDYWGKGTMVTVTS	A J3	2 M
4	VH1	YYCARGYSYGSGDWAFDYWGKGTMVTVTS	A .T4	з м
16	VH1	YYCARRSGYTGVNWSFDYWGKGTMVTVTS	A .T4	1 M
13	VH1	YYCARDPRGVLWAFDYWGKGTMVTVTS	A J4	<u>1</u> м
47	VH3	YYCARDRSYGSNNAFDYWGKGTMVTVTS	A .T4	з м
12	VH1	YYCASNPVYGGPADYFDYWGKGTOVTVTS	A .T5	1 M
7	VH1	YYCARDRSTVGGFDYWGKGTOVTVTS	A .T5	2 M
33	VH1	YYCAK	A .T5	2 M
41	VH1	VYCAP	Δ	1 M
22	VH3	YYCURGSSCWAYFAYWCKCTOUTUTS	Δ	1 M
49	VH3	YYCARERPTACYFAYWCKCTOVTVTS	A .T5	1 M
3	VH1		Δ	а м
5	VH2	YYCAPDCVPCVFFDVWCKCTTVTVTA	Δ	а м
11	VH1	YYCARACCWGFDYWCKCTTVTVTA	A .T6	2 M
42	VH1	YYCAROSSTCHYFDYWCKCTTVTVTA	A .T6	1 M
48	VH3	VYCAPCYNTLCCFSUVYYFDYWCCCTTVTVTA	Δ	1 M
30	VH3	VYCAPCSVCCWPHFDYWCKCTTVTVTA	Δ	1 M
27	VH3	YYCARGGRRFDYWCKCTTVTVTA	A .T6	а м
28	VH3	YYCARDTSACCEYEDYWCKCTTVTVTA	A .T6	1 M
21	VH3	YYCARDYYDGRRGFDYWGKGTTVTVTA	A .T6	1 M
15	VH1	YYCARTPARCYPYGFDYWCKGTTLTVTE	A .T7	1 M
2	VH1	YYCARRECYPTDYWCKCTTVTVTD	S .T8	<mark>а</mark> м
51	VH1	YYCARSAGESRHFAYWGRGTEVTVSS	E .T9	а т
52	VH2	YYCAR	E .T9	- 1 т
53	VH1	YYCARLGLGGLFFEYWGRGTEVTVSS	E .T9	1 T
54	VH1	YYCAR	E .T9	а 1 т
55	VH1	YYCA*TSCVAAFYFDYWCKCTEVTVSS	E .T9	1 T
56	VH1	YYCARDRGGRRYFDYWGRGTEVTVSS	Е Ј9	т 1 т
57	VH3	YYCARVEGOSFDYWGRGTEVTVSS	E .T9	2 T
59	Vh3	YYCARD	E .T9	1 т
60	VH3	YYCARVI.GOYFDYWGRGTEVTVSS	E .T9	а 1 т
61	VH3	YYCARDYTCCCFDYWCRCTEVTVSS	E .T9	- т
62	VH3	YYCARDRGLVGFDYWGRGTEVTVSS	E .T9	2 T
43	VH3	YYCAREEGSTENFAYWGKGTOVRVTS	A .T10	з л
46	VH3	YYCARDVDYFDYWCKCTOVTVTS	A J10	2 M
45	VH3	YYCARGPNYYGALDYWGKGTTVTVSS	A J11	1 M
		V N/P D N/P J		

Fig. 3. Translated complementarity determining region (CDR) 3 repertoire sampling of tuna lgH. Amino acid alignment arranged by JH gene of the VH(DH)JH junctional region. Clone names and VH family are denoted on the left, JH gene, reading frame of DH used and CH region is given to the right. Conserved tyrosine and cysteine of Y × C motif of VH segment as well as G × G glycines of JH gene are highlighted in yellow. Predicted DH segment is highlighted in green, blue or magenta depending on the use of reading frame one, two or three, respectively, in panel B. Amino acids were assigned to VH, DH or JH based on at least two bases of codon matching consensus, grey highlighting indicates a residue partially encoded by D consensus that does not encode consensus amino acid. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

with their pairwise genetic distances (Fig. 6). The four tuna IgH V gene families interleaved amongst those VH segment sequences used by the other fish, indicating that they are using members of the same ancient VH families that have been conserved by transspecies maintenance since at least the common ancestor of these divergent fish. However tuna families VH1 and VH2 appear to have arisen from a more recent duplication in the order Perciformes.

We also explored the relationship of these new tuna IgH C regions to those of other fish and other vertebrates (Fig. 7). As expected, the tuna IgM grouped with that isotype from other fish, most closely the Perciforme trumpeter fish (*Latris lineata*). Within the IgM, teleosts group together as a sister group to all of the other vertebrates, including the shark which shares a more ancient common ancestor and would be expected to branch outside of teleosts and tetrapods. However this incongruence with the organisms' natural history is not unusual for phylogenetic analyses of teleost antigen receptors, unless balancing numbers of operational taxonomic units fill the other vertebrate classes (Criscitiello and Flajnik, 2007). IgT of tuna clusters with that isotype from other representative fish.

I dDle I	Ta	ble	1
----------	----	-----	---

CDR3 lengths in amino acids.	
------------------------------	--

	IgM	IgT
Maximum	18	13
Minimum	9	8
Range	9	5
Median	12	11
Mean	12.49	11.00
Variance	3.31	2.00

3.6. IgH μ and τ relative tissue expression

Quantitative real-time PCR (Supplemental Fig. 4) was used to assess the expression of these isotypes at the mRNA level in secondary lymphoid tissues relative to the anterior kidney (the chief primary lymphoid tissue of fish (Fillatreau et al., 2013; Lam et al., 2004; Trede et al., 2004)). Relative levels of μ were higher than τ in both spleen and gill, but μ did not predominate τ to as great an extent in gill as it did in spleen. The averaged ratio of HC μ to HC τ in tuna spleen was 7.35 compared to 2.89 in the gill.

4. Discussion

4.1. Repertoire

The 20–30% sequence disparity between some VH family members in tuna suggests either ample somatic hypermutation for affinity maturation of these fish antibodies or an older divergence date of VH family members than has been seen in some other teleosts such as stickleback (Gambon-Deza et al., 2010). Families VH1 and VH2 share between 52% and 64% nucleotide identity (Supplemental Fig. 3) and appear recently diverged (Fig. 6), perhaps within a Perciformes branch including tuna.

Despite the initial report that found shorter CDR3 in trout IgM than IgT (Hansen et al., 2005a) we found a small skewing towards shorter IgT CDR3 (Table 1). We predict that this may be an effect of a different immunogenetic rearrangement mechanism involving a single shared DH gene segment that governs τ versus μ/δ in a clade including tuna and other fish (more below). IgH CDR3 often dominates antigen recognition properties of the six CDRs comprising the F_{ab} paratope (Davis, 2004; Xu and Davis, 2000). The three reading frames usually supplied by DH gene segments therefore contribute significantly to the eventual translated repertoire of antigenic specificities. Additionally, extended length of IgH CDR3 has been crucial in many clinically important antibodies against viral scourges (Kwong and Wilson, 2009; McLellan et al., 2011), and the loop has evolved into an entirely new domain in some antibodies of cattle (Wang et al., 2013). Thus, restricting the entire repertoire to rearrangements based on a single DH would be expected to place constraints on antigen recognition.

As Perciformes, tuna belong to the largest order of vertebrates that accounts for approximately 40% of all bony fishes. As *T. orientalis* is the first Perciformes to have either their IgM and T repertoire or IgH locus analyzed immunogenetically, there may be a great many fish that employ this system for Ig isotype control and B lineage commitment. As successful as the Perciformes have been in radiating to occupy most fresh and saltwater niches on Earth, the potential restriction in CDR3 length variability must not have too great a toll on the fitness of these fish.

4.2. Genomic organization

The generalized translocon configuration of the teleost IgH locus with a set of VH genes and downstream μ and δ CH regions has been confirmed in many studies (Bengten et al., 2002; Jørgen-

		CH1→
T. C. S. C. I. H D. H L. J G. C. S. S. G. C. X. J B. C. H. S.	prientalis chautsi punctatus rerio lineata mykiss plivaceus salar pirratum laevis platyrhyncho caurus sapiens	TPRAPTLFFLACGSGTGDMVTLGCLALBFTPSS-VTFSMT-KSGTALTDFHQYPPVOKGEFYTGVSQVQVRCDWBAKQP-B-KGTVTHPDGT-SSVTPYPSEP TSTGPTVFPLMQCGSGTGDMVTLGCLALGFTPSS-LTYRMS-KNGAALTDSIQYPPVOKGDVYTGVSQITKIRCDWBARBS-B-RGAVHHPAGN-GKADFMKEKV -SAPKSLFPVMQCGSASDGLTVLGCVTDULASADGLSFIMUDASGSALTDVQCYPAVQATGGYTSVSIVKASDMNGNKK-B-TGEVKNGLGS-KDASLGKPVE -SAPCSVFEISOCSGSDGGTILGLANGFSPAS-LTYFMS-KNEVALADDFIQYPPVLKONLYGTSQITKIRCDWBARBY-TGEVKNGLGS-KDASLGKPVE PTTFPLMQCGEGSEQNVTLGCLANGFSPAS-LTYFMS-KNEVALADDFIQYPPVLKONLYGTSQITKISEITKYKSDWBARAPNTIRGAVTHAAGN-AQCDBRPHV FPLAQCGSGTGDMNTLGCLANGFFPAS-LTFKNDEEGNSLTDFVQYPAVQTGGYMCVSQLKVKRADND-SKKFBCAVEHSAGS-KKVFVKKOPE FPLAQCGSGTGDMNTLGCLANGFFPAS-LTFKNDEEGNSLTDFVQYPAVQTGGYMCVSQLKVKRADND-SKKFBCAVEHSAGS-KKVFVKKOPE STAPTLFPLAQCGSGTGDMNTLGCLANGFFPAS-LTFKNNDEEGNSLTDFVQYPAVQTSGSYMCVSQLKVKRADND-SKIFBCAVEHSAGS-KKVFVKKOPE STAPTLFPLAQCGSGTGDMNTLGCLANGFFPAS-LTFKNNDEEGNSLTDFVQYPAVQTSGSYMCVSQLKVKRADND-SKIFBCAVEHSAGS-KKVFVKKOPE STAPTLFPLAQCSSGTGDMNTLGCLANGFFPAS-LTFKNNDEGGNSLTDFVQYPAVQTSGSYMCVSQLKVKRADND-SKIFBCAVEHSAGS-KVVFVKKOAE -PSSPTLYELVSSCQQUNDGSVFFGCLANDFYPAS-LTFKNNADYSGTKKKVFVKKVGYTGVSQLKVKRADND-SKIFBCAVEHSAGS-KVVFVKKOAE -PSSPTLFLISGGSSMPVTIGCLANDFYPAS-LTFKNNADYSGCKSSLTDFVQYPAVQTSGSYMCVSQLKVKRADND-SKINP SKSPSLFFLISGGSSMPVTIGCLANDFYPAS-LTFKNNADYSGKKFVKKVFVKKVGYSSSAFVKGVSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
		CH2→
T. C. S. C. I. H D. 1 L. 2 O. H P. C. S. 4 G. C. X. 2 A. H B. t H. 4	rientalis chautsi chautsi cerio lineata nykiss salar salar sirratum laevis polatyrhyncho saurus sapiens	LPEDPT LKULASSDESEASFSCHARVFSPENG - IKWLKNDGDVUPDKVESIKTFIKGCOTTDCKTLVSVASFIMUPTEDLRPNSRKFTCEFKIRNENAFVNSVTVTVGGSCPEPTGCE TVVPPTELKULASSDESEASFSCHARDFSPKOYE-IKWLKNEAEIPNKIVBIKNPLGERODKNGTIVSASFIMUPASEW-TVDKFTCEFECKERGENGATFMNSVTYKHTTPGNCE R-ELHSILLTTFTCHINGTATFWCHATFSPKSHH-FKWTLEKTHINKIVBIKNPLGERODKNGTIVSASFIMUPASEW-TVDKFTCEFECKERGENGATFMNSVTYKHTTPGNCE R-ELHSILLTTFTCHINGTATFWCHATFSPKSHH-FKWTLEKTHINKIVBIKNPLGERODKNGTIVSASFIMUPASEW-TVDKFTCEFECKERGENGATFMNSVTYKHTTPGNCE R-ELHSILLTTFTCHINGTASFSCFAKDFSPKSHH-FKWTLEKTHINKIVBIKNPLGERODKNGSUTYSATSILKINAETMKQAESKVKCVFEENKKNDFKNGVMCV PPDLFTKVLASSDESEASFSCFAKDFSPKOYE-FKWYONDOEVINAUONFFKDEKNGSVTEYSATSILKINAETMKQAESKVKCVFEENKKNNRTUGVTSDAGVH LJOPEILYVHTSKEEMSENKTASFSCFAKDFSPKOYE-FKWYONDOEVINAUONFFKDEKNGSVTEYSATSILKINAESMKSEGVTTCVFEENKANVRTUGVTSDAGVH LFSSPELKWASFVGENNEASFSCFAKDFSPKOYO-IKKMKNEGEVVSDFKSSCESEKKSKTIVSATSILKVNESEMKSEGVTTCVFEENKANVRTUGVTSDAGVH LFSSPELKWASFVGENNEVRTUGVTSDAGVH LFSSPELKWASFVGENNE
		CH3→
T. C S. C I. H D. 1 L. 2 G. C S. S G. C X. 2 A. H B. C H. S	orientalis nautsi ounctatus cerio lineata nykiss blivaceus salar virratum laevis olatyrhyncho caurus sapiens	VLDUEVEIKGPTMIDMFVESKGTFVCQUKINKPQUTKIFWEDEDEKSMIESVPA-DGFKGTVNVPLDITYDEWTAGIKRVCVVQHTNFL-EPIKRVYERKIV V-DUDIKITGPTLADMFVNREGTVCQUKVNEPYGGRLMEDEGEKSMIGASKTFNDEGTP-S-FFLEITTDEWSKGIKRVQVEENLI-EPIKRVYERKIV QPQVKITGPSIEDILIKRAGUEGRAEGDTGFKSIKWLIGNEEISSISNLSSKTVS-LOTHIGFEWINGTEIGSVEHAFTQQVEKVTFKRENG DDNWHDIIFPSIEDULINRKGILKGASGDTGFKSIKWLIGNEE
		CH4→ ^ ^
T. C. S. C. I. H D. 1 L. J O. H P. C. S. 4 G. C. X. J A. H B. C. H. 4	orientalis chautsi ounctatus cerio lineata nykiss salar cirratum taevis olatyrhyncho caurus aapiens	GLEOHPSVFMLDP-VEOAMKETVTLTCFVKGFYPKEVLVSWLVDDVBADSNYDISTTNPVESNGFYSVEGULISIDDWKDSDKVYSCVVHESLKNTTRAHVRSMAHGST GQTGRPAVFMLPP-VEHTREKTVTLTCFVKDFPOSVLVMMKLVBSVGVGNPVESNGSYBAVGOLSLSBEGKKKDVYSCVVHESLKNTTRAHVRSIGHETF NP-SFEVILIP
		SEC→
T. C. S. C. I. H. D. L. J. G. C. S. S. G. C. X. J. A. H. B. C.	prientalis phautsi punctatus rerio lineata mykiss plivaceus salar pirratum laevis platyrhyncho saurus sapiens	ACTNUVNINKEVE ENTNUVNINKEVE KTPTUVNILTEPSCKAO EKSIILVSTPADICKA EKSIILVSTPADICKO EKSIIVVILNKEVE-CKAO ETNUVNILVNILFCKAO NOPULVNILSUNFPGCKAO CKESEVNISULAUPTINGCO- GKESEVNISULAUPTINGCO- GKESEVNISULAUPTINGCO- GKETINVVSLVUSDTASGC GKETINVVSLVUSDTASGC GKETINVVSLVUSDTASGC GKETINVVSLVUSDTASGC

Fig. 4. Amino acid sequence alignment of the heavy chain of IgM in different vertebrate species. The conserved (identical and similar) residues are highlighted in black. Arrows indicate CH1–CH4 and the secretory tail. An asterisk (*) is above the conserved cysteine that forms a disulfide bond with the light chain, a carrot (^) is above conserved cysteines that form intra-domain disulfide bonds. Gaps are indicated by dashes. Genbank accession numbers are: AAQ14846.1 *Siniperca chuatsi* (Chinese perch), A45804 *lctalurus punctatus* (channel catfish), AF281480_1 *Danio rerio* (zebrafish), ADC45388.1 *Latris lineata* (striped trumpeter), AAW66973.1 *Oncorhynchus mykiss* (rainbow trout), AF226284_1 *Paralichthys olivaceus* (flounder), AAB24064.1 *Salmo salar* (salmon), AAU04507.1 *Cinglymostoma cirratum* (nurse shark), AAA49774.1 *Xenopus laevis* (African clawed frog), CAC43280.1 *Anas platyrhyncho* (duck), AAN60017.1 *Bos taurus* (cattle), and AAS01769.1 *Homo sapiens* (human).

sen, 2000; Samuel Aparicio et al., 2002), but many deviations on the theme are present as catfish and medaka appear to lack τ and many fish have duplications of blocks of the locus (Fillatreau et al., 2013). Although reported in shark (Zhu et al., 2012), class switch recombination (CSR) has not been described in a teleost. However, one study showed that teleost AID could induce CSR in mouse (Barreto et al., 2005).

The IgH τ gene together with its dedicated DH–JH gene segments are located between the VH gene segment block and the

(DH–JH–CH) μ cluster in zebrafish, fugu (*Takifugu rubripes*) and three-spined stickleback (*G. aculeatus*) (Danilova et al., 2005a,b, 2011; Gambon-Deza et al., 2010; Hansen et al., 2005a), or it is inserted within the VH gene segment array as in rainbow trout (Hansen et al., 2005b). Thus, in these fish the RAG mediated joining of a VH gene segment to either DH of τ or DH of μ/δ will determine whether the developing pro-B lymphocyte (using mammalian convention) becomes an IgT or IgM/D producer. Experiments in zebrafish (Schorpp et al., 2006) and trout (Zhang et al., 2010) have

CH1→

		* ^	
T. S. S. D. C. E.	orientalis chuatsi salar mykiss rerio idella coioides	TPSSPTLYPLLQGDSDTCMKVTVGCLARDFPRSIDFQWNDARGTRVDS-AQYIGGQNN-KYTGVSVVQVSRSDIKSSYNCSVDHLGRTMAVTVK 93 SSWTVASPTLFPLVQCNSGFADKTVGCLARDFPRSIDFQWTNSSGTALTS-ENYPPAEKNNKYTGVSLVQVSRSDNDSRSFRCSVHHQGSTHDLQW 99 -AATAPSTLFPLVQCNSGFADKTVGCLARDFPRSITFQWTNSSGTALTS-ENYPPAEKNNKYTGVSLVQVSRSDNDSRSFRCSVHHQGSTHDLQW 99 -AATAPSTLFPLWNCCTPSNDIYSLGCVATGFSPSSITFQWTDASGSPLTDFVQYPSVQSGATYTGVSQLVVSKNDWEKSKSFRCSVHHQGSTAAVIN 100 ETLTAPSTLTLMNCCTPSNDIYSLGCIAKGFSPSSTFQWTDASGSPLTDFVQYPSVQSGETYTGVSQLVVSKNDWEKSKSFRCSVDHPGGATAVIN 100 ETLTAPVVFKNSQCSS-SIDSLTIGCLASEFSPSSTFQWTDASGALTQFVQYPSVQSGETYTGVSQLVANNWENSKSFRCSVDHPGAATAVIN 100 VSDSKSPTIVFNSQCSS-SIDSLTIGCLASEFSPDSVNFRWS-SNGNEMKNVTQHSTANNLKFSYITITKKQNDQS-DIMCTADHPSKTVNETF- 90 VSDSKSPTIVFNSQCSS-SSDFWFIGCLASDSLNDKLK-DNGKDUGTIGITQYPVKRGDKTFQSLNVIKKQNDQS_NTCGDAAYQNETVSKOF- 92 YSQTTAAPALFPLVQCKSGTAGTVVGCLAQDFFPESLTFQWTDASGTTGTF-KQYFVMKDNKYTGVSVL	
		CH2→	
T. S. O. D. C. E.	orientalis chuatsi salar mykiss rerio idella coioides	LPSPPRVTLLSVPNGDTOVLVGTIEEFLPETLS-VKWKKNRDYESDFDDWVERQ-IGDVYSAVSVLKVKNADWESKAVYTCEVTHGKIMEKKASK-A 188 KPIPPKVTLVSVPSEDSQALVCTIEDGRSGTIDSFKWKKNGAELNDYIQSPIOK-TGELHSAVSVLKVKNTDWDSKAVYTCEVTYSGTOYKKKASK-A 195 KTYPKSPTVSLLSAPIGTTOYLMCMIEDFNSTVT-VTWKKNDEVEGOTPTLVKQ-PSGLYSGSLLKVENTNUNNKVKYSGVVEHQGETIKKIISKTE 197 KEVPKSPTVSLLSAPIGTTOYLMCMIEDFNSETVK-VTWKKNDEVEGOTPTLVKQ-PSGLYSGSSLLKVENTNUNNKVKYSGVVEHQGETISKTSKTE 198 STAPTLSLVEVPTKNFFAMCVIEDFYTENIT-VTWKKNDIVCGOTPTLGKR-PSGLYSGSSLLKVENTNUNNKVKSGVVEHQGETISKTSKTE KVNPOBPTLSLVEVTKNFFAMCVIEDFYTENIT-VEWKENNIVCGOTPTLGKR-PSGLYSGSSLLKVENTNUNNKVKSGVVEHQGETISKTSKTE 198 STAPTLSLVEVTEKNFFAMCVIEDFYTENIT-VEWKENNIVCGOTPTLGKR-PSGLYSGSSLLKVENTTUNNNKVKSGVVEHQGETISKTSKTE 195 KVNPOBPTLSLVEVTIGKSTFAMCVIEDFYTENIT-VEWKENNIVCGOTPTLGKR-PSGLYSGSSLKVENTUTUNNKVKSGVVEHQGETISKTSKF VNPOBPTLSLVEVTIGKSTFAMCVIEDFYTENIT-VEWKENDIVGGTGLEVSCVILESKENNAEGLFTAESFYEVSSKTWNVNTRYTCEVTHQGKTFFKKONFTA 185	
		СН3→	
T. S. O. D. E.	orientalis chuatsi salar mykiss rerio idella coioides	PITVTLNPPSPKKEFNNNOAELECIVEGODNTIVSETEMTWOINGKNVAGNMGLLKTAGGOYSKTNTLTRSLTEWLOVNUVCSAKRKDVTVTKDLTEBK PITVTLNOPSPKEIFSNKOAELECIITGODTIVDEIKVTWOIDGOVSDNINETTKSVDGORIKHSTMTRSRTEWORVNKVCSAKRKDVTVTKDLTFBK PLTVTLNPPRVREVFLDNOAVLECVITGTOOTYSGTTITWOVNGEDEMDGIDLKNIESKGULNSRVSTLTIGOTEWNVNKVCSAKRSGEDTFVIODLSTK PLTVTLNPPRVREVFLDNOAVLECVITGTOOTYSGTNITWEINGDIOTAHIDLKNIESKGULNSRVSTLTIGOTEWNVNKVOCSAMKRGEDTPVIODLSTK KREMULPPWREVFLDNOAVLECVITGTOOTYSGTNITWEINGDIOTAHIDLKNIESKGULNSRVSTLTIGOTEWNVNKVOCSAMKRGEDTPVIODLSTK FLTVTLNPPRVREVFLDNOAVLECVITGTOOTYSGTNITWEINGDIOTAHIDLKNIESKGULNSRVSTLTIGOTEWNVNKVOCSAMKRGEDTPVIODLSTK FTALTLNPPINTEWFLNNRTVLOAVSGDLSTAVKEASVSGKMDVPNSVSGENSGOHVKINVDVOTKWEINGGKVNCTTRDTINNKDIKOEIFPNK TFALTLNPPIERELFVHNKTVLEAVVSGDVKEMVOASVSGKVKDANVASESITSEIIVPSNDTSSFMKKHKVTIDTNKWPGGEVNCTIRDTNNNRDIQOKIHPNK FTALTLNPPIERELFVHNKTVLEAVVSGDVKEMVOASVSGKVKDANVASESITSEIIVPSNDTSSFMKKHKVTIDTNKWPGSINKVCCSAIR-DNNTDIQOKIHPNK	G 289 G 297 G 302 G 303 G 285 G 299 G 292
		СН4→	
T. S. O. D. C. E.	orientalis chuatsi salar mykiss rerio idella coioides	DRSKTTVTVHILSBEBIRKNSDVTLVCLVSSSVQQDYVIAMSDDAGQNTGNYVDGITFPPQKTQHG-YSVTSVYTINKEKWNQQRSVENCNYWLYGSNKSMIIR DGREPRVTVHVLTBEDINKGAEVTLVCLVSSPVLODYYIAMSEDETNIYTDGINFPPQKTQHG-YSVTSVYTTKEKWN-KFNMFYCNVWEAGSNDSMEPR S-VAPSVSVHLLPBEDIKKEGEVTLVCLVVGPSLGDVYIMWQVDSGQVGBGVTSPPQKTQKANFYTSVFTTKEKWR-KFNMFYCAVKHAGSDNNTALK S-BAPSVSVHLLPBEDIKKEGEVTLVCLVVGPSLGDVYIMWKEDSGPVGBGVTSPPQKTKKGNYEVTSVFTTKEKWBRN-LVFTCAVKHAGSDNNTALK S-BAPSVSVHLLPBEDIKKEGEVTLVCLVVGPSLGDVYIMWKEDSGPVGBGVTSPPQKTKKGNYEVTSVFTTKEKWBRN-LVFTCAVKHAGSDNNTALK DGGEPSVKMYKPDDISTKQISYVGEVSSPNLGDVYIMWKEGGPYIEGKTSSDFDQQGS-TSVGSILTISKEFENPETTICAVVHAJMKDTASEL DGRSPVKMYKPDDISTKQISYVGEVSSPNLGDVYIMWKIGNGPYIEGRTSAPIR OGSDFKVTVHILPIEDITKAAQGSEVTLVCLVSSRAQQDYYIMWKIGNGPYIEGRTSAPIR	GV 394 GV 398 ERRV 404 EMSV 405 LKST 384 QATT 399 DV 398
		SEC→	
T. S. O. D. E.	orientalis chuatsi salar mykiss rerio idella coioides	SKATGNSLECDK 406 SKSHGNSIECRK 410 SKSHGNSCEDK- 415 SKSTGNSCEDK- 416 SKSKQAECPVDY 411 SYAMSNSVECKK 410	

Fig. 5. Amino acid sequence alignment of the heavy chain of IgT CH domain. The conserved (identical and similar) residues are marked in black. Arrows indicate CH1–CH4 and the secretory tail. An asterisk (*) is above the conserved cysteine that forms a disulfide bond with the light chain, a carrot (^) is above conserved cysteine of intra-domain bond. Gaps are indicated by dashes. Genbank accession numbers are: ACZ54909.1 *Epinephelus coioides* (grouper), ABF19723.1 *Ctenopharyngodon idella* (grass carp), AAY42141.1 *S. chuatsi*, ACX50291. *S. salar*, AAW66981.1 *O. mykiss*, and CAI20890.1 *D. rerio*.

demonstrated heavy chain isotype exclusion at the cellular level in fish.

The repertoire data presented here suggest that something different may be occurring in tuna, however (Fig. 8). Like in other fish, VH genes appear to be shared between both τ and μ/δ . Three of the four families we found expressed in these fish clearly were used in both μ and τ , although a fourth was only found with μ . This could easily be a case of low sampling depth as VH4 appeared as a singular use in the described clones. Since this is a more parsimonious explanation than a dedicated μ VH rearranging to a shared DH segment that rearranges to dedicated JH segments, Fig. 8 depicts an array of VH gene segments that can be used in either primary transcript type.

However, unlike in other fish, both τ and μ rearrangements of tuna appear to employ the same DH gene segment. As all the tuna JH genes appear with only μ or τ (none seem to be shared), this points to an arrangement where a single shared DH can rearrange with JH segments upstream of either μ or τ to determine isotypic fate of the cell, and this DH's rearrangement to several shared VH's is not the event that stochastically determines isotype. So at least two possibilities of IgT vs. IgM/D lineage fate are now supported by data, one in which τ and μ/δ share VH genes from one block (as in zebrafish) or more than one array 5' and 3' to the τ elements (as in trout) but DH–JH are dedicated to isotype, and now the tuna paradigm where VH–DH are shared and JH is dedicated to isotype. In one instance (tuna) the DH–JH join would instruct lineage and in the other the VH-DH join would. Importantly, we

note that genomic sequencing of the locus has not yet confirmed this organization in the tuna or the absence of additional DH that we did not sample. Interestingly, this hypothesized organization could also explain why in trout a significant difference was seen in CDR3 length and repertoire between τ and μ clones (each using dedicated DH and JH gene segments, (Castro et al., 2013)) while we do not see a great difference in tuna (sharing VH and DH and only having dedicated JH, Table 1 and Fig. 3). Future work must determine if this is truly stochastic in lymphocyte development or if there are more complex control mechanisms instructing this important juncture determining the B cell's fate.

4.3. CH regions

IgM is the most conserved isotype in jawed vertebrates and was thought to be omnipresent until the discovery of its absence in coelacanth (Amemiya et al., 2013). The tuna IgM CH region seems very consistent with its orthologs in other fish.

As also noted in other IgT sequences (Hansen et al., 2005a), there are many prolines in the region of the tuna IgT CH1/CH2 juncture which may be indicative of hinge-like flexibility. Tuna IgT CH3 seems to conform to the classical Ig superfamily β -sandwich with canonical cysteines and tryptophan positions seen in the domain of the salmonids and grouper that are important in the folding of this domain (Fig. 5) (Lesk and Chothia, 1982). The tryptophan to cysteine replacement seen in zebrafish and grass carp appears to be a cyprinid characteristic, and has been sug-

Fig. 6. Tuna IgH V genes shared with other fish. Phylogenetic analysis of representatives of the four tuna IgH V families (clone 3 for VH1, 5 for VH2, 57 for VH3 and 29 for VH4) with VH genes from two of the better studied teleost models, rainbow trout and zebrafish. Trout and zebrafish accession numbers are labeled at each branch terminus.

Fig. 7. Tuna IgM and IgT CH regions group with those isotypes of other teleosts. Neighbor joining phylogeny using Dayhoff matrix and 1000 bootstrap replications. Alignment and accession numbers used in tree are shown in Figs. 5 and 6.

Fig. 8. Hypothetical organization of elements in the tuna IgH locus suggests a novel method of lineage determination at the fish IgH locus. Simplified cartoon showing three paradigms in the locus organization and immunogenetic control of IgH τ vs μ/δ rearrangement.

gested by modeling to still allow an immunoglobulin superfamily domain fold (Danilova and Amemiya, 2009).

In this limited sampling, we found no evidence of the IgT hybrid molecule with two CH domains identified in the common carp *Cyprinus carpio* (Savan et al., 2005a), the IgM/D hybrids (with or without VH domains) found in catfish (Edholm et al., 2010), the IgMCH1/IgTCH4 variant IgT2 in carp (Ryo et al., 2010), nor the run-on transcription secreted IgD form of trout (Ramirez-Gomez et al., 2012).

In mammalian IgM a carboxyl terminal glycosylation site in the secretory tail is important in J chain polymerization (Hohman et al., 2003; Tacchi et al., 2013), but may have distinct physiology in teleost such as catfish and zebrafish that have it (Wiersma et al., 1997). This conserved N-linked glycosylation site is part of a larger sequence motif enabling polymerization of IgM and IgA of mammals but is not present in the secretory tail of tuna IgM or IgT, although there is a conserved cysteine in IgT shared with other teleosts. Trout IgT was found as a monomer in serum but a multimer in mucus (Zhang et al., 2010), however these IgT multimers did not appear to be covalently linked as they are known to be for trout IgM (Kaattari et al., 1998). More biochemical studies are necessary to resolve the stoichiometry and functional avidity of IgT.

4.4. Expression

Isotype expression studies in tuna echo what has been determined in other fish species: IgT and IgM both are present in primary and secondary lymphoid tissues, yet more IgM than IgT, however the gap closes at mucosal sites (Hansen et al., 2005a; Ryo et al., 2010; Savan et al., 2005b; Xiao et al., 2010). IgT1 in adult zebrafish deviated from this pattern in being primarily in the headkidney and thymus (Hu et al., 2010). The molecular data presented here could serve as a springboard for revisiting immunoglobulin studies in tuna at the protein level that were initiated in the southern bluefin (*Thunnus maccoyii*) (Watts et al., 2001). The work also opens gates to explorations of B lineage development and commitment, where molecular markers might could be adapted from fish species such as zebrafish (Zimmerman et al., 2011) and trout (Barr et al., 2011; Macmurray et al., 2013) where more work has been performed.

5. Conclusions

Endothermic birds and mammals employ immunoglobulin isotypes IgM, IgY, IgE and IgG in systemic immunity but have specialized IgA for mucosal immunity. Poikilothermic vertebrates lack IgA, although amphibians do have an orthologous mucosal isotype in their IgX. IgM had long been the primary functional immunoglobulin isotype recognized in teleost until the recent discovery of the mucosal specialization of IgT. Mucosal epithelia is the barrier breached or exploited by most internal pathogens of vertebrates, and also ectoparasites of fish (Xu et al., 2013). This penetration of mucosal defense is also true of many pathogens of concern in the tuna ranching industry, including sea lice (Hayward et al., 2009), betanodaviruses (Gomez et al., 2010) and gill platyhelminths (Colquitt et al., 2001). It is hoped that this basic molecular characterization of humoral immunity in these economically important endothermic fish will enable more studies of host-pathogen interactions and the feasibility of vaccine development for offshore ranches. Increasing the productivity of these operations by reducing infectious disease mortality will reduce pressures on wild tuna stocks and the fish species used to feed ranched tuna.

Moreover, the apparent shift of isotype determination from VH– DH recombination to DH–JH recombination at the tuna IgH locus is interesting from a fundamental standpoint of lymphocyte antigen receptor immunogenetics, and begs many questions that must be verified and queried with new algorithms (Olivieri et al., 2013) at the levels of the tuna genome, the immunoglobulin proteins, tuna B cells, development in the pronephros, and the fish's response to pathogen. If the single tuna DH gene is verified at the genome, it will be interesting to know whether this IgH locus orientation is found only within this clade of endothermic fish or a broader set of Perciformes. These studies should provide insight into the natural history and fundamental physiology of antibodies while providing much needed tools for managing the health of ranched, and thereby wild, tuna stocks.

Acknowledgements

This work was supported by the NIH through grant AI56963 and the NSF through grant IOS1257829 to M.F.C. Funding support from the TAMU-CONACyT initiative to A.B. through grant 2010-006 is also gratefully acknowledged.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.dci.2013.10.015.

References

- Amemiya, C.T., Alfoldi, J., Lee, A.P., Fan, S., Philippe, H., Maccallum, I., Braasch, I., Manousaki, T., Schneider, I., Rohner, N., Organ, C., Chalopin, D., Smith, J.J., Robinson, M., Dorrington, R.A., Gerdol, M., Aken, B., Biscotti, M.A., Barucca, M., Baurain, D., Berlin, A.M., Blatch, G.L., Buonocore, F., Burmester, T., Campbell, M.S., Canapa, A., Cannon, J.P., Christoffels, A., De Moro, G., Edkins, A.L., Fan, L., Fausto, A.M., Feiner, N., Forconi, M., Gamieldien, J., Gnerre, S., Gnirke, A., Goldstone, J.V., Haerty, W., Hahn, M.E., Hesse, U., Hoffmann, S., Johnson, J., Karchner, S.I., Kuraku, S., Lara, M., Levin, J.Z., Litman, G.W., Mauceli, E., Miyake, T., Mueller, M.G., Nelson, D.R., Nitsche, A., Olmo, E., Ota, T., Pallavicini, A., Panji, S., Picone, B., Ponting, C.P., Prohaska, S.J., Przybylski, D., Saha, N.R., Ravi, V., Ribeiro, F.J., Sauka-Spengler, T., Scapigliati, G., Searle, S.M., Sharpe, T., Simakov, O., Stadler, P.F., Stegeman, J.J., Sumiyama, K., Tabbaa, D., Tafer, H., Turner-Maier, J., van Heusden, P., White, S., Williams, L., Yandell, M., Brinkmann, H., Volff, J.N., Jabin, C.J., Shubin, N., Schartl, M., Jaffe, D.B., Postlethwait, J.H., Venkatesh, B., Di Palma, F., Lander, E.S., Meyer, A., Lindblad-Toh, K., 2013. The African coelacanth genome provides insights into tetrapod evolution. Nature 496, 311-316.
- Barr, M., Mott, K., Zwollo, P., 2011. Defining terminally differentiating B cell populations in rainbow trout immune tissues using the transcription factor Xbpl. Fish Shellfish Immunol. 31, 727–735.
- Barreto, Vasco M., Qiang Pan-Hammarstrom, Y.Z., Hammarstrom, Lennart, Misulovin, Ziva, Nussenzweig, M.C., 2005. AID from bony fish catalyzes class switch recombination. JEM 202, 733-738.
- Bengten, E., Quiniou, S.M., Stuge, T.B., Katagiri, T., Miller, N.W., Clem, L.W., Warr, G.W., Wilson, M., 2002. The IgH locus of the channel catfish, Ictalurus punctatus, contains multiple constant region gene sequences: different genes encode heavy chains of membrane and secreted IgD. J. Immunol. 169, 2488–2497. Bengten, E., Clem, L.W., Miller, N.W., Warr, G.W., Wilson, M., 2006. Channel catfish
- immunoglobulins: repertoire and expression. Dev. Comp. Immunol. 30, 77-92.
- Block, B.A., Dewar, H., Blackwell, S.B., Williams, T.D., Prince, E.D., Farwell, C.J., Boustany, A., Teo, S.L.H., Seitz, A., Walli, A., Fudge, D., 2001. Migratory movements, depth preferences, and thermal biology of Atlantic bluefin tuna. Science 293, 1310-1314.
- Brodeur, P.H., Riblet, R., 1984. The immunoglobulin heavy chain variable region (Igh-V) locus in the mouse. I. One hundred Igh-V genes comprise seven families of homologous genes. Eur. J. Immunol. 14, 922-930.
- Castro, R., Jouneau, L., Pham, H.P., Bouchez, O., Giudicelli, V., Lefranc, M.P., Quillet, E., Benmansour, A., Cazals, F., Six, A., Fillatreau, S., Sunyer, O., Boudinot, P., 2013. Teleost fish mount complex clonal IgM and IgT responses in spleen upon systemic viral infection. PLoS Pathog. 9, e1003098.
- Colquitt, S.E., Munday, B.L., Daintith, W., 2001. Pathological findings in southern bluefin tuna, Thunnus maccoyii (Castelnau), infected with Cardicola forsteri (Cribb, Daintith & Munday, 2000) (Digenea: Sanguinicolidae), a blood fluke. J. Fish Dis. 24, 225-229.
- Criscitiello, M.F., Flajnik, M.F., 2007. Four primordial immunoglobulin light chain isotypes, including lambda and kappa, identified in the most primitive living jawed vertebrates. Eur. J. Immunol. 37, 2683-2694.
- Danilova, N., Amemiya, C.T., 2009. Going adaptive: the saga of antibodies. Ann. N.Y. Acad. Sci. 1168, 130-155.
- Danilova, N.B.J., Jekosch, K., Steiner, L.A., 2005a. The immunoglobulin heavy-chain locus in zebrafish: identification and expression of a previously unknown isotype, immunoglobulin Z. Nat. Immunol. 6, 295-302.
- Danilova, N., Bussmann, J., Jekosch, K., Steiner, L.A., 2005b. The immunoglobulin heavy-chain locus in zebrafish: identification and expression of a previously unknown isotype, immunoglobulin Z. Nat. Immunol. 6, 295-302.
- Danilova, N., Saunders, H.L., Ellestad, K.K., Magor, B.G., 2011. The zebrafish IgH locus contains multiple transcriptional regulatory regions. Dev. Comp. Immunol. 35, 352-359.
- Davis, M.M., 2004. The evolutionary and structural 'logic' of antigen receptor diversity. Semin. Immunol. 16, 239-243.
- Edholm, E.S., Bengten, E., Stafford, J.L., Sahoo, M., Taylor, E.B., Miller, N.W., Wilson, M., 2010. Identification of two IgD+ B cell populations in channel catfish, Ictalurus punctatus. J. Immunol. 185, 4082-4094.
- Emanuelsson, O., Brunak, S., Von Heijne, G., Nielsen, H., 2007. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2, 953-971.
- Fillatreau, S., Six, A., Magadan, S., Castro, R., Sunyer, J.O., Boudinot, P., 2013. The astonishing diversity of Ig classes and B cell repertoires in teleost fish. Front. Immunol. 4, 28.

- Flajnik, M.F., Rumfelt, L.L., 2000. Early and natural antibodies in non-mammalian vertebrates. Curr. Top. Microbiol. Immunol. 252, 233-240.
- Fromentin, J.M., Powers, J.E., 2005. Atlantic bluefin tuna: population dynamics, ecology, fisheries and management. Fish Fish. 6, 281-306.
- Gambon-Deza, F., Sanchez-Espinel, C., Magadan-Mompo, S., 2010. Presence of an unique IgT on the IGH locus in three-spined stickleback fish (Gasterosteus aculeatus) and the very recent generation of a repertoire of VH genes. Dev. Comp. Immunol. 34, 114-122.
- Gomez, D.K., Mori, K., Okinaka, Y., Nakai, T., Park, S.C., 2010. Trash fish can be a source of betanodaviruses for cultured marine fish. Aquaculture 302, 158-163.
- Hansen, J.D., Landis, E.D., Phillips, R.B., 2005a. Discovery of a unique Ig heavy-chain isotype (IgT) in rainbow trout: implications for a distinctive B cell developmental pathway in teleost fish. Proc. Natl. Acad. Sci. USA 102, 6919-6924.
- Hansen, John D., L, E.D., Phillips, Ruth B., 2005b. Discovery of a unique Ig heavychain isotype (IgT) in rainbow trout: implications for a distinctive B cell developmental pathway in teleost fish. PNAS 102, 6919-6924.
- Hayward, C.J., Bott, N.J., Nowak, B.F., 2009. Seasonal epizootics of sea lice, Caligus spp., on southern bluefin tuna, Thunnus maccoyii (Castelnau), in a long-term farming trial. J. Fish Dis. 32, 101–106.
- Hikima, J., Jung, T.S., Aoki, T., 2011. Immunoglobulin genes and their transcriptional control in teleosts. Dev. Comp. Immunol. 35, 924-936.
- Hohman, V.S., Stewart, S.E., Rumfelt, L.L., Greenberg, A.S., Avila, D.W., Flajnik, M.F., Steiner, L.A., 2003. J chain in the nurse shark: implications for function in a lower vertebrate. J. Immunol. 170, 6016-6023.
- Hu, Y.L., Xiang, L.X., Shao, J.Z., 2010. Identification and characterization of a novel immunoglobulin Z isotype in zebrafish: implications for a distinct B cell receptor in lower vertebrates. Mol. Immunol. 47, 738-746.
- Jones, D.T., Taylor, W.R., Thornton, J.M., 1992. The rapid generation of mutation data matrices from protein sequences. CABIOS 8, 275-282.
- Jørgensen, T.Ø., S, J., 2000. Immunoglobulin D (IgD) of Atlantic cod has a unique structure. Immunogenetics 51, 452-461.
- Jusup, M., Klanjscek, T., Matsuda, H., Kooijman, S.A., 2011. A full lifecycle bioenergetic model for bluefin tuna. PLoS One 6, e21903.
- Kaattari, S., Evans, D., Klemer, J., 1998. Varied redox forms of teleost IgM: an alternative to isotypic diversity? Immunol. Rev. 166, 133-142.
- Koichiro Tamura, D.P., Peterson, N., Stecher, G., Nei, M., Kumar, S. 2011. Molecular evolutionary genetics analysis, Authors:.
- Kwong, P.D., Wilson, I.A., 2009. HIV-1 and influenza antibodies: seeing antigens in new ways. Nat. Immunol. 10, 573-578.
- Lam, S.H., Chua, H.L., Gong, Z., Lam, T.J., Sin, Y.M., 2004. Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev. Comp. Immunol. 28, 9-28.
- Lefranc, M.P., Pommie, C., Ruiz, M., Giudicelli, V., Foulquier, E., Truong, L., Thouvenin-Contet, V., Lefranc, G., 2003. IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily Vlike domains. Dev. Comp. Immunol. 27, 55-77.
- Lesk, A.M., Chothia, C., 1982. Evolution of proteins formed by beta-sheets. II. The core of the immunoglobulin domains. J. Mol. Biol. 160, 325-342.
- Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408
- Macmurray, E., Barr, M., Bruce, A., Epp, L., Zwollo, P., 2013. Alternative splicing of the trout Pax5 gene and identification of novel B cell populations using Pax5 signatures. Dev. Comp. Immunol. 41, 270-281.
- Magadan-Mompo, S., Sanchez-Espinel, C., Gambon-Deza, F., 2011. Immunoglobulin heavy chains in medaka (*Oryzias* latipes). BMC Evol. Biol. 11, 165. Mashoof, S., Goodroe, A., Du, C.C., Eubanks, J.O., Jacobs, N., Steiner, J.M., Tizard, I.,
- Suchodolski, J.S., Criscitiello, M.F., 2013. Ancient T-independence of mucosal IgX/A: gut microbiota unaffected by larval thymectomy in *Xenopus laevis*. Mucosal Immunol. 6, 358-368.
- McLellan, J.S., Pancera, M., Carrico, C., Gorman, J., Julien, J.P., Khayat, R., Louder, R., Pejchal, R., Sastry, M., Dai, K., O'Dell, S., Patel, N., Shahzad-ul-Hussan, S., Yang, Y., Zhang, B., Zhou, T., Zhu, J., Boyington, J.C., Chuang, G.Y., Diwanji, D., Georgiev, I., Zhang, D., Zhou, H., Zhu, J., Boyngton, J.C., Chang, G.T., Drwahly, D., Georglev, L., Kwon, Y.D., Lee, D., Louder, M.K., Moquin, S., Schmidt, S.D., Yang, Z.Y., Bonsignori, M., Crump, J.A., Kapiga, S.H., Sam, N.E., Haynes, B.F., Burton, D.R., Koff, W.C., Walker, L.M., Phogat, S., Wyatt, R., Orwenyo, J., Wang, L.X., Arthos, J., Bewley, C.A., Mascola, J.R., Nabel, G.J., Schief, W.R., Ward, A.B., Wilson, I.A., Kwong, P.D., 2011. Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 480, 336-343.
- Mladineo, I., Block, B.A., 2009. Expression of Hsp70, Na+/K+ ATP-ase, HIF-1 alpha, IL-1 beta and TNF-alpha in captive Pacific bluefin tuna (*Thunnus orientalis*) after chronic warm and cold exposure. J. Exp. Mar. Biol. Ecol. 374, 51-57
- Olivieri, D., Faro, J., von Haeften, B., Sanchez-Espinel, C., Gambon-Deza, F., 2013. An automated algorithm for extracting functional immunologic V-genes from genomes in jawed vertebrates. Immunogenetics 65, 691-702.
- Olsen, M.M., Kania, P.W., Heinecke, R.D., Skjoedt, K., Rasmussen, K.J., Buchmann, K., 2011. Cellular and humoral factors involved in the response of rainbow trout gills Ichthyophthirius multifiliis infections: molecular to and immunohistochemical studies. Fish Shellfish Immunol. 30, 859-869.
- Ottolenghi, F., 2008. Capture-based aquaculture of blue-fin tuna. In: Lovatelli, A., Holthus, P. (Eds.), Capture-Based Aquaculture. Food and Agriculture Organization of the United Nations, Rome, pp. 169-182.
- Page, R.D., 2002. Visualizing phylogenetic trees using TreeView. In: Baxevanis, A.D., et al. (Eds.), Current Protocols in Bioinformatics, Unit 6 2. Chapter 6.

- Pascual, V., Capra, J.D., 1991. Human immunoglobulin heavy-chain variable region genes: organization, polymorphism, and expression. Adv. Immunol. 49, 1–74.
- Ramirez-Gomez, F., Greene, W., Rego, K., Hansen, J.D., Costa, G., Kataria, P., Bromage, E.S., 2012. Discovery and characterization of secretory IgD in rainbow trout: secretory IgD is produced through a novel splicing mechanism. J. Immunol. 188, 1341–1349.
- Ryo, S., Wijdeven, R.H.M., Tyagi, A., Hermsen, T., Kono, T., Karunasagar, I., Rombout, J.H.W.M., Sakai, M., Verburg-van Kemenade, B.M.L., Savan, R., 2010. Common carp have two subclasses of bonyfish specific antibody IgZ showing differential expression in response to infection. Dev. Comp. Immunol. 34, 1183–1190.
- Salinas, I., Zhang, Y.A., Sunyer, J.O., 2011. Mucosal immunoglobulins and B cells of teleost fish. Dev. Comp. Immunol. 35, 1346–1365.
- Aparicio, Samuel, C, J., Stupka, Elia, Putnam, Nik, C, J.-M., Dehal, Paramvir, Christoffels, Alan, R, S., Hoon, Shawn, Smit, Arian, Sollewijn Gelpke, Maarten D., Roach, Jared, O, T., Ho, Isaac Y., W, M., Detter, Chris, Verhoef, Frans, Predki, Paul, T, A., Lucas, Susan, Richardson, Paul, Smith, Sarah F., C, M.S., Edwards, Yvonne J.K., Doggett, Norman, Z, A., Tavtigian, Sean V., Pruss, Dmitry, B, M., Evans, Cheryl, Baden, Holly, Powell, Justin, G, G., Rowen, Lee, Hood, Leroy, Tan, Y.H., E, G., Hawkins, Trevor, Venkatesh, Byrappa, R, D., Brenner, Sydney, 2002. Whole-genome shotgun assembly and analysis of the genome of *Fugu rubripes*. Science 297, 1301.
- Savan, R., Aman, A., Nakao, M., Watanuki, H., Sakai, M., 2005a. Discovery of a novel immunoglobulin heavy chain gene chimera from common carp (*Cyprinus carpio* L.). Immunogenetics 57, 458–463.
- Savan, R., Aman, A., Sato, K., Yamaguchi, R., Sakai, M., 2005b. Discovery of a new class of immunoglobulin heavy chain from fugu. Eur. J. Immunol. 35, 3320– 3331.
- Schorpp, M., Bialecki, M., Diekhoff, D., Walderich, B., Odenthal, J., Maischein, H.M., Zapata, A.G., Boehm, T., 2006. Conserved functions of Ikaros in vertebrate lymphocyte development: genetic evidence for distinct larval and adult phases of T cell development and two lineages of B cells in zebrafish. J. Immunol. 177, 2463–2476.
- Schwarz, R., Dayhoff, M., 1979. Matrices for detecting distant relationships. In: M, D. (Ed.), Atlas of Protein Sequences. National Biomedical Research Foundation, pp. 353–358.
- Tacchi, L., Larragoite, E., Salinas, I., 2013. Discovery of J Chain in African lungfish (*Protopterus dolloi*, Sarcopterygii) using high throughput transcriptome sequencing: implications in mucosal immunity. PLoS One 8, e70650.
- Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.

- Tian, J.Y., Sun, B.J., Luo, Y.P., Zhang, Y.A., Nie, P., 2009. Distribution of IgM, IgD and IgZ in mandarin fish, *Siniperca chuatsi* lymphoid tissues and their transcriptional changes after *Flavobacterium columnare* stimulation. Aquaculture 288, 14–21.
- Trede, N.S., Langenau, D.M., Traver, D., Look, A.T., Zon, L.I., 2004. The use of zebrafish to understand immunity. Immunity 20, 367–379.
- Wakae, K., Magor, B.G., Saunders, H., Nagaoka, H., Kawamura, A., Kinoshita, K., Honjo, T., Muramatsu, M., 2006. Evolution of class switch recombination function in fish activation-induced cytidine deaminase, AID. Int. Immunol. 18, 41–47.
- Wang, F., Ekiert, D.C., Ahmad, I., Yu, W., Zhang, Y., Bazirgan, O., Torkamani, A., Raudsepp, T., Mwangi, W., Criscitiello, M.F., Wilson, I.A., Schultz, P.G., Smider, V.V., 2013. Reshaping antibody diversity. Cell 153, 1379–1393.
- Watts, M., Munday, B.L., Burke, C.M., 2001. Isolation and partial characterisation of immunoglobulin from southern bluefin tuna *Thunnus maccoyii* Castelnau. Fish Shellfish Immunol. 11, 491–503.
- Wiersma, E.J., Chen, F., Bazin, R., Collins, C., Painter, R.H., Lemieux, R., Shulman, M.J., 1997. Analysis of IgM structures involved in J chain incorporation. J. Immunol. 158, 1719–1726.
- Wilson, M., Bengten, E., Miller, N.W., Clem, L.W., Du, P.L., Warr, G.W., 1997. A novel chimeric Ig heavy chain from a teleost fish shares similarities to IgD. Proc. Natl. Acad. Sci. USA 94, 4593–4597.
- Xiao, F.S., Wang, Y.P., Yan, W., Chang, M.X., Yao, W.J., Xu, Q.Q., Wang, X.X., Gao, Q., Nie, P., 2010. Ig heavy chain genes and their locus in grass carp *Ctenopharyngodon idella*. Fish Shellfish Immunol. 29, 594–599.
- Xu, J.L., Davis, M.M., 2000. Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities. Immunity 13, 37–45.
- Xu, Z., Parra, D., Gomez, D., Salinas, I., Zhang, Y.A., von Gersdorff Jorgensen, L., Heinecke, R.D., Buchmann, K., Lapatra, S., Sunyer, J.O., 2013. Teleost skin, an ancient mucosal surface that elicits gut-like immune responses. Proc. Natl. Acad. Sci. USA 110, 13097–13102.
- Zhang, Y.A., Salinas, I., Li, J., Parra, D., Bjork, S., Xu, Z., LaPatra, S.E., Bartholomew, J., Sunyer, J.O., 2010. IgT, a primitive immunoglobulin class specialized in mucosal immunity. Nat. Immunol. 11, 827–835.
- Zhang, Y.A., Salinas, I., Oriol Sunyer, J., 2011. Recent findings on the structure and function of teleost IgT. Fish Shellfish Immunol. 31, 627–634.
- Zhu, C., Lee, V., Finn, A., Senger, K., Zarrin, A.A., Du Pasquier, L., Hsu, E., 2012. Origin of Immunoglobulin Isotype Switching. Curr. Biol. 22, 872–880.
- Zimmerman, A.M., Moustafa, F.M., Romanowski, K.E., Steiner, L.A., 2011. Zebrafish immunoglobulin IgD: unusual exon usage and quantitative expression profiles with IgM and IgZ/T heavy chain isotypes. Mol. Immunol. 48, 2220–2223.

Supplemental Table 1. Primers.

Primer ID	Primer name	Sequence (5'-3')	Designed to clone	Position	Amino acid
MFC 261	TolgMCF1	TGGATCMGACAGVMWCAGG	#6 KF713344	286-306	NGQNVQP
MFC 244	TolgMCR1	GCACARTAAAHACAGCDCTGTC	#6 KF713344	310-333	DTAVYYCA
MFC 260	TolgMCR	GCACARTAATAHACAGC	#6 KF713344	316-333	AVYYCA
MFC 340	MCF1	CCCTATTTCGCACAGACGCAACAA	#6 KF713344	1279-1302	GIKRVCVV
MFC 350	TolgMGR3F4	CTCATGGTACCCACCAGTGACTTGAGA	#6 KF713344	919- 945	LMVPTSDLR
MFC 351	TolgMGR3F5	ACTGTGACCTACGGAGGGTCATGT	#6 KF713344	1009-1032	TVTYGGSC
MFC 352	TolgMGR3F6	TTCTCTGTAGCTCTGCTGCTGCTGTTG	#6 KF713344	4- 30	FSVALLLLL
MFC 365	TolgZCR1	ACTTGGAGGGTTCAGTGTCACTGT	#59 KF713336	975- 996	TVTLNPPS
MFC 367	TolgZCR2	TGTGTTGACTTGCAGCCACTCAGT	#59 KF713336	1185-1206	TEWLQNQVNT
MFC 369	TolgZCR3	GAATGTGGACTGTCACTGTTGTCTTGCT	#59 KF713336	1278-1302	SKTTVTVHI
MFC 381	TolgMC1R4	TGTAAACTCGGTGGCGAGGCA	#6 KF713344	475- 495	CLATEFT
MFC 382	TolgMC1R5	TGGAGGATACTGGATGAAGTC	#6 KF713344	544-564	DFIQYPP
MFC 384	TolgZRC1R4	ACTGTTGGCTGCCTTGCACGTGAC	#59 KF713336	468- 489	CVGCLARD
MFC 386	TolgZRC1R6	TGGGAGTTTCACTGTCACAGCCATGGT	#59 KF713336	663- 687	TMAVTVKLP
MFC 387	TolgZRC1R7	ACCAAGATGATCGACGGA	#59 KF713336	642-657	SVDHLG

Primer name*	Sequence (5'-3')
βactin	ATCGTGGGGCGCCCCAGGCACC
βactin	GTCATCTTCTCYCTGTTGGC
TNF-α	CCAGGCRGCCATCCATTTAGAAG
TNF-α	CCGACCTCACCGCGCT
IL-1β	GGRSAGCGACATGGYRCGATTTCT
IL-1β	GGTGCTGATGTACCAGTTG

* Mladineo, I., Block, B.A., 2009. Expression of Hsp70, Na+/K+ ATP-ase, HIF-1 alpha, IL-1 beta and TNF-alpha in captive Pacific bluefin tuna (*Thunnus orientalis*) after chronic warm and cold exposure. J Exp Mar Biol Ecol 374, 51-57.

>signal peptide >variable	AC 100
ATGTTCTCTGTAGCTCTGCTGCTGCTGCTGCAGCTGGATCCTGTGTGAAGTGTGAACAGTTGACAGCCAGC	R 34
GTCTGACCATCACCTGCCAGGTCTCTTATTCTGTTGGCAGGTATTACACAGCTTGGATCAGACAGCCTGCAGGGAAAGGACTGGAATGGAATGGAATGG	AG 200
L T I T C Q V S Y S V G R Y Y T A I R Q P A G K G L E W I G M H	R 67
ATATACTGGAGGTTCATACTACAAAGATTCACTAAAGAACAAGTTCAGTATCGACTTAGACTCTTCCAGCAACAGAGTGACTCTAAACGGACAGAATGT	rg 300
Y T G G S Y Y K D S L K N K F S I D L D S S S N R V T L N G Q N V	100
>]olning CAGCCTGAAGACACTGCTGTGTATTACTGTGGCCTCCCGATCAAGTATTTACTATGCTTTTGACTACTGGGGGAAAGGCACGATGGTCACCGTCACCGTC Q P E D T A V Y Y A S R S S I Y Y A F D Y W G K G T M V T V T S >uCH1	AG 400 A 134
CCACACCACGTGGAACGACTCTGTTTCCCCTGGCACCATGTGGCTCTGGGACTGGAGACATGGTCACTCTTGGCTGCCTCGCCACCGAGTTCACACCCZ	AG 500
T P R G T T L F P L A P G G S G T G D M V T L G C L A T E F T P S	3 167
CTCAGTGACCTTCTCATGGACCAAAAGTGGGGCTGCCCTGACTGA	∖A 600 200
GTCCAAGTGAGGAGACAGGACTGGGAGGGAAAGCAAAGC	AC 700 P 234
CACTTTTTGAGTTGCCAACTCTTAAAGTGCTGGCCTCGCCTCCACGAAGGAGGGCGAGGCTTCCTTC	IA 800 Z 267
TGAGATCAAATGGCTGAAAGATGACGGGGATGTCTTCGACAAAGTATATGAGATCAAAACACCCCATTAAGGAAAGCCAGACCACCGATGGAAAGACACT	'G 900
E I K 🖥 L K D D G D V F D K V Y E I K T P I K E S Q T T D G K T L	300
TACAGTGTAGCAAGTTTTCTCATGGTACCCACCAGTGACTTGAGACCTAAATTCCACTAAGTTTACATGTGAGATTTAAGTTGAAAAATGAAAACGCATTT Y S V A S F L M V P T S D L R P <u>N S T</u> K F T \square E F K L K N E N A F > μ CH3	v 334
TGAATTCAACTGTGACCTACGGAGGGTCATGTCCTGGAGCCAACTGGATGTGGAAGTACTAGATGTGGAAGTAGAAGACCAAAGGCCCCACAATGACGGACA	AT 1100
<u>N S T</u> V T Y G G S C P E P T G C E V L D V E V E I K G P T M T D N	4 367
GTTTGTAGAGAGTAAAGGAACTTTAGTATGTCAAGTCAA	FT 1200 400
GAAGAATCAGTCCCCGCTGATGGATTTAAAGGCACAGTCAACGTTCCACTTGACATCACGTATGACGAATGGACTGCTGGGATAAAGCGTGTCTGCGT E E S V P A D G F K G T V N V P L D I T Y D E W T A G I K R V 💆 V >µCH4	rg 1300 v 434
TTCAACATACAAATTTTCTGGAACCAATAAAGAGAGTGTATGAAAGGAAGATTGTAGGACTTGAACAGCATCCTTCGGTGTTCATGCTGGTTCCAGTAC	3A 1400
Q H T N F L E P I K R V Y E R K I V G L E Q H P S V F M L V P V H	S 467
ACAGGCTAATAAAGAAACGGTGACCCTGACTTGCTTTGTGAAAGGCTTCTACCCCAAGGAGGTGTTGGTGTCTTGGCTTGTTGATGATGATGACGCCAGCAGA	AC 1500
Q A N K E T V T L T C F V K G F Y P K E V L V S L V D D V P A D	500
TCAAATTACGATATCAGTACCACAAACCCTGTAGAGAGGAGCAATGGATTCTATTCTGTCTATGGCCAGTTAACACTCAGCCTTGACGATTGGAAGGACAG	rG 1600
S N Y D I S T T N P V E S N G F Y S V Y G Q L T L S L D D W K D S	D 534
>secretory ta	ail
ACAAGGIGIATAGUIGIGIAGTITACCAIGAATCICIGAAAAACACAACTAAAGCCAICGICAGGICCAIGGCGCACGGAICAACIGCCCAAACCAAIC	r 1700
K V Y S G V V Y H E S L K <u>N T T</u> K A I V R S M A H G S T A Q T N I	567
GGTCAACCTCAACATGGAGGTCCAT 1725 VNLNMEVH 575	

Supplemental Figure 1. Nucleic acid and deduced amino acid sequence of *T. orientalis* IgHµ full length clone 6. The start of the predicted signal peptide, VH, JH, CH domains and secretory tail are marked above the sequence. Potential N-linked glycosylation sites are underlined. Cysteines and tryptophans necessary for the Ig superfamily fold are highlighted in black, the cysteine that forms the disulfide bond to the Ig light chain is highlighted in red.

>si ATG	.gn AT	al GGA	pej CT2	ptio ATA	le 3GA(CAG	TTG	TGC	TGC	TTT	TA	ACI	ATC	CTG	CTG	GG	CAG	GCG	TT	GAT	GG:	>va TCA	ari GAC	abl	Le raa	CAG	JAA:	rcc	'GAZ	ACCA	GC	AGI	TA	ААА	AGC	CTG	100
М	М	D	Y	R	т	v	v	L	I	L I		т	I	С	W	A	G	v	7	D	G	Q	т	L	т	E	2 5	3	Е	Ρ	А	v	к	ĸ	F	G	34
~ ~ ~							~-~~					~		_ ~ -			~- ~	~		~	- ~ .	~ ~ ~										~~-		~~-	~		
GAG	AA	TCC	CAG	CAA	ACTO	GAC	CTG	TAC		CATC	TGC.	GA'I	"TG:	rca	TTC	:AG	CAG	CTA	TG.	GTA	rG0	GCC:	TGG	ATC	CAG.	ACA	AGG(TC.	CTG	GGA	AA	.GGA	ACT T	GGA	GTG	GAT	200
E	•	5	п	ĸ	ц	T	C	T	т	ъ	G	1		5	F	ъ	5	I	G	м	4	A	W	T	ĸ	Q	A	P	, (- K		G	ц	5	w	Ŧ	07
TGC	CT	ATA	GTO	GGC	GC	AGC	AAA	TAC	TAC	TCT	CA	GTC	'AG	гтс	AAG	GC	CGG	ттс	'AC	CAT	СТС	CCA	GAG	AT	AAC	AGO	AG	AGA	GCZ	GCT	GT	ATC	TG	CAG	ATG	AAC	300
А	Y	S		G (3 1	S :	ĸ	Y I	Y	s	Q	s	v	Q	G	;	R	F	т	I	s	R	E		1	s	R	Е	Q	L	Y	I		Q	М	N	100
																	>	joi	ni	ng															>	τCH1	
AGT	CT	GAA	GAO	CTG	AAG	ATT	CTG	CTG	TTI	CTA'	'AT	TGI	'GC'	rcg	AGA	CG	TAC	CCI	TT	GAC	TA	CTG	GGG	TCO	JTG	GGZ	CTC	JAA	GTC	CACA	GT	ATC	TT	CCG	AAA	CAC	400
S	L	ĸ	т	Е	D	S	A	v	2	C Y		С	A	R	D	v	P	F		D	Y	W	G	R	G	1	. 1	<u>c</u>	v	т	v	S	s	Е	т	P	134
Стт	ירים	TCA	CC	ייסגג	гст	ста	~~~	TTT	GCJ	מיזידי	מא	GTG	יממי	гст	Сат	יאמי	тсс	ממיז	та	AAG	тт;	ልርግጥ	стт	יממנ	TTG	ററ്പ	ידים	סמי	GTO	ACT	тт	'TTC	ירר	2 A A	GAC	ידאד	500
s		S	P	T	L	Y	P	L	L	0	C	I) (5	D	т	G	N	ĸ	v		T V	v	G	G	L	A	R	2 1) F		F	P	ĸ	S	I	167
										~															-												
CGA	TT	TCC	AG	TGG/	AAT	GAT	GCC.	AGG	GGG	ACC	AG	AGI	'GG2	ATT	CTG	CA	CAA	TAT	'AT	TTC.	AG	GTC	AAA	AC	AAT.	AAZ	TA:	"AC	AGO	GGT	CA	GTO	FTG	GTC	CAA	GTA	600
D	F	Q	2	Ŵ	N I	D.	A	R (G	т	R	v	D	S	A		Q	Y	Ι	S	G	Q	N	1 1	1	к	Y.	Т	G	v	S	V	7	v	Q	v	200
T CC	יא <i>ר</i>	<u>م</u> سر	m C 1	2021	הא ח	۲	000		× ۳۰ 7	ייידי ג		m.~~~	ישיטי	202	m (1) א	ma	መመረግ	~~~		200	א ד <i>י</i> ע		т <i>С</i> 17	, 	סגר	m (17	2	>ד C	H2	-	~~	m.~~	507	~~~	m (1)	CTTT	700
g	PAG	AIC S	םבי. ת	ACA. T	K K	AGI S	CGI g	v	A T Y		GI	g ICC	v.GI(-GA D	ц	т.	ם דום מ	GAC	.GC ,	T ACC.	M	∆ی 2	v	.GAU	AG. V	TGF			D.CCF	d d	υ Γ		D.GA	əəə v	т GA	стт. 'т.	234
5	ĸ	5	2	-	ĸ	5	5	-	-		-	5	v	Ľ			G	r	•	1 .		~	v	1	v	r		-	F	5	r	r	ĸ	v	-		231
TGC	'TA	TCG	GT	GCC	AAA'	TGG	AGA	CAC	TCF	AGGI	CC	TGG	TG	гgт	ACA	AT	TGA	GGA	GT	TTC	TC	CCT	GAA	AC	ACT	GTC	AG:	CA	AAT	GGA	АА	AAG	JAA	TAG	AGA	CTA	800
L		s	v	Р	N	G	D	т	Q	v	L	v	7	2	т	I	Е	Е	F	L]	P 1	Е	т	L	s	v	ĸ	: v	к		к	N	R	D	Y	267
													-	_															_	_							
TGA	AT	CCG	AC.	TTC	ACT	GAT	TGG	GTC	CCC		CA	AAT	TGO	GAG	ATG	TA	TAT	TCA	GC	TGT	CAC	GTG	TCC	'TGZ	AG	GTC		JAA	CGC	AGA	СТ	GGG	BAG	AGT	AAA	GCT	900
Е	S	D)]	F 1	C 1	D	W	V	Р	ĸ	Q	Ι	G	D	v		Y	S	А	v	S	V	L	. I	C I	v	ĸ	Ν	А	D	W	E	3	S	ĸ	A	300
GTT	בידיי	CAC	רידים	2TC	אממי	тсı	CTC	202	220	2/2 2 2		מידב	יביד	гса	G 2 2	Ga	acc	ററ്ന	מיסי	222	ייקב	יז < ייייייד	СНЗ ТАТ	ירישט	סמי	тCIZ		סדי	1220	ירריי	ററ	220	ישיב	ററമ	222	AGT	1000
v	Y	Т	G	E	v	Т	н	ĸ	6	JK	c :	I	Y	E	ĸ	ĸ	A	500	3	ĸ.	A.	P	I	Т	v	101	. 1	510	N	P	P	S	P	K	K	F	334
TTT	TC	AAC	AA	CAA	CCA	AGC	AGA	GTT	GGZ	GTO	'TA	TCG	TTC	GAA	GGA	CA	AGA	CAA	CA	CCA	TTC	GTA:	TCI	GAC	GAC	TGF	AA	ſGA	CTT	GGC	AG	ATT	'AA	TGG	AAA	AAA	1100
F	•	N	N	N	Q	А	Е	L	Е	C	I	V	7 1	E	G	Q	D	N	т	I	1	v	S	Е	т	Е	М	т	V	Q		I	N	G	ĸ	N	367
								~~						~																	~~	-		a m a			1000
TGT	GG 7	CCG	GCA	AAT7	A.T.G(GGA	CTG T		AAG V	JACI	GC.	AGG	CAC c	3TC	AGI	AC:	agc a	AAA V	AC:			CGC: T	TGA T		GT.	rcı e	TOTO	CAC	TG4	AGTG W	GC	TGC		GTC	AAC M	ACA	1200
v	А		. 1	N I		.	ы.		~	T	A	G	5	Q	I		5	r	T	и	T	Ц	⊥ >τ	CH4	۲. 1	5	ц	1	Б	w	ц	, r	2	v	IN	T	400
GTG	CG	CTG	TT	CTG	CAA	AAA	GAA	AAG	ACC	JTGA	CA	GTI	'AC'	ГАА	AGA	TC	тта	сті	TC	CAC	AA	AGG	AGA	TCO	- GGA	GCZ	AG	ACA	ACZ	GTG	AC	AGI	rcc	ACA	TTC	TCT	1300
v	R	С	s	А	ĸ	R	к	D	7	7 1		v	т	к	D	L	т	F	,	н	К	G	D	R	S	F	۲.	C	т	v	т	v	н	I	I	S	434
		-																																			
CAG	AG	GAG	GA	AAT	CAG	AAA	AAA	CTC	AGZ	ATGI	CA	CTC	TG	GTG	TGT	CT	GGT	CTC	'CA	GTT	СТС	GTG	CAG	CAC	GA	TTZ	ATT2	ACA	TAC	CCT	GG	TCF	AGA	CGA	TGC	TGG	1400
E	1	Е	Е	I	R	к	N	S	D	v	т	I	. 7	V	С	L	v	S	S	S		V (Q	Q	D	Y	Y	I	. 7	A 10		S	D	D	Α	G	467
202	**	7	0m /		N N (7)	~ ~	0.000	<u>م</u> سر د		ית גר	17 C	~~~			~	האו	<u>.</u>	200	107	202	T C/	- - - -	2017		որու	207	201		י הוקו	0.0	~ 7	m /17	مى	<u>.</u>	~ ~~	220	1 5 0 0
ACA	AA N	ATA T		3667 3 1	AAC:	TAC v	GTT V	GAT	GGC	TATC	AC)	CT1		000 0	CIC	AG	AAG V	ACC T	CA	ACA	rG(GCT/ V	ACI		311. 7	ACF T	CAG:	w	v	ICAC T	CA T	TCA	TAT:	AAG V	GAA T	AAG V	500
×	14		Ì		•	-	•		-	-	-	-	-	F	×	5	••	-	×		3	-			•	-	5	۷	÷ >se	ecre	to	rv	ta	il	-		500
TGG	AA	CCA	GC	AGC	GCT	CTG	TTT	TCA	ACI	GCA	AC	GTI	TG	зст	TGT	ΤG	GCA	GCA	AT	AAG	TC	CAT	GAT	'AA'	TAC	GAG	GAG	JTG	TCO	JAAA	GC	CAC	GG	GTA	ATT	CAC	1600
W	N	Q	Q	R	s	v	F	N	C	N	1,1	v	W	г	v	G	S	N	I	К	S	м	I	I	R	Ģ	3 1	7	s	к	A	т	G	N	S	L	534
										_								_			-																
TTG	AA	TGT	GA	CAA	3	161	4																														
E		C	D	К		539																															

Supplemental Figure 2. Nucleic acid and deduced amino acid sequence of *T. orientalis* IgHr full length clone 59. The start of the predicted signal peptide, VH, JH, CH domains and secretory tail are marked above the sequence. Features are annotated as in Supplemental Figure 1.

Supplemental Figure 3. Nucleotide identity matrix of VH region coding sequences to identity VH families. Clone numbers are in bold the left and right of rows and top and bottom of columns. Pairwise differences of less than 30% using nucleotide version of alignment in Figure 3 are highlighted in green and indicate inclusion in same VH family (by 70% nucleotide identity).

Supplemental Figure 4. IgH μ and τ expression in systemic and mucosal lymphoid tissues. Quantitative real-time PCR of secondary lymphoid tissue μ and τ C region mRNA expression relative to that in anterior kidney, standardized to β -actin. Two template concentrations were analyzed. Experiment performed in triplicate, error bars indicate standard deviation.