Graphs, charts and tables are always appropriate when any type of data collection is involved. Students must be responsible for the ir construction. They choose which type based on what the data is to show.

Science TEKS

$6^{\text {th }}$ Grade - Charts, Grapfs, and Tables / Force and Motion -
(6.2) (E) The student is expected to construct simple graphs, tables, maps, and charts to organize, examine, and evaluate information.
(6.6) The student knows that there is a relationship between force and motion.

The student is expected to:
(A) identify and describe the changes in position, direction of motion, and speed of an object when acted upon by force;
(B) demonstrate that changes in motion can be measured and grapfically represented; and
(C) identify forces that shape features of the Earth including uplifting, movement of water, and volcanic activity.

Math TEESS

$6^{\text {th }}$ Grade - Probability and Statistics
(10) The studentuses statistical representations to analyze data. The student is expected to:
(A) drawand compare different graphicalrepresentations of the same data;
(B) use median, mode and range to describe data;
(c) sketch circle graphs to display data; and solve problems by collecting, organizing, displaying, and interpreting data.

Materials to be used by teacher:
(1) Cassette/Compact Disc of music (This can be optional, but will be well worth the extraeffort! The music will be used to tell students what to do. When the music is playing, there is movement. When the music is stopped, everyone must freeze. There will be more detail about this (ater.)
Materials for each group of 4 students:
(1) Rolling Chair - (works best on hard surface-it might be nice to do this some where outside the classroom for data collection part)
**You may need to borrowsome "teacher chairs" for the day - a nice chocolate thank you upon returning the chair is atways a good ide a!
(1) Meter stick
(1) Clip board with data collection sheet and pencil
(1) Strip of masking tape (about as long as the chair's width)

Procedure:

1. Divide students into groups of no more than 4.
2. Have students choose jobs (or assign them)
(If time allows, these jobs can rotate so all students have an opportunity to experience each position.)
3. Recorder/person in charge
4. Measurement specialist (M.S.)/holds the meter stick
5. Object specialist (O.S.)/sits in rolling chair
6. Force specialist (F.S.)/pusfies person in rolfing chair
7. Play music for students as (F.S.) pushes the (O.S.) in
the chair. This should be one firm push only! Students followinstructions on data collection sheet. When music is off, all students must freeze. (M.S.) is the only one to move as distances are measured. Recorder may assist if needed, but chairs may not move at all during "no music" time. After all groups have recorded measurement, music resumes and groups go on to next trial and repeat step 3 until all 9 trials are comple te.
\qquad
\qquad

Recorder
Me asurement Expert \qquad musical Chairs

Object Specialist
Force Specialist
\qquad

Finding the mean-Here you will use the $\mathcal{T A B L E}$ below to helpyou to find the average strength of your Force specialist. The Force specialist should try to push with the same amount of force each time. ***Remember to push carefully and from the seat of the chair, not the back. Decide now which units you will use to measure the distance the chair travels from the tape line after being pushed.

Write down your $\mathcal{H} \mathcal{Y} P O \mathcal{T H} \mathcal{H}$ IS here. What to you predict to fiappen to the distance traveled as you go from \mathcal{T} rial \mathcal{N} umber 1 to $\mathcal{T r i a l} \mathcal{N}$ umber 9? \qquad

Data Table 1

Trial $\mathcal{N u m b e r}$	Distance Traveled in meters
1	
2	
3	
4	
5	
6	
7	
8	
9	

To find the mean - add up the columns for distance traveled and divide by 9. S fow your work here:

Mean for distance
traveled is:
(don't
forget units!)

Finding the median-to find the median, make a CHART, a list of the 10 me as urements you took in order from smallest to largest. Then find the one in the middle. That is your median.

Chart of Trials

Median for
Distance traveled is: \square ** don't forget units!

Now, pair up with another group. Each of the object specialists should face one another as they sit in the rolling chair. Make sure the chairs are lined up on one of the masking tape lines used Gefore. With the ir hands, the object specialists should push away fromeach other. (This makes them "force specialists" as well!) The measurement specialist from each group should measure the distance traveled by the chair from their group. Record this data on a scratch piece of paper. Repeat this activity 3 times, then share your data with one other paired up group. You will also need to find the mean of each paired up group.

1. In the space below, create a table that shows a comparison of your data with another groups. You must include the mean of your three trials. Labelthe table, "Data Table 2."

Create your
table fiere.
Don't forget
to label it!

On a separate sheet of paper complete the following

directions individually.

2. On the front, construct a chart that shows the forces involved when the chair moved. For example, one force is the force of friction between the chair and the floor. You would draw a picture of the chair and the floor and label it "Friction". Now you must ilfustrate at least 2 more forces.
3. On the back of the paper, copy Data table 1. Construct a graph that displays the data. On the 6ottom of the sheet, write at least 3 sentences explaining your fypothesis and if your data supports it.
*** This would be an appropriate time to have a class discussion on "unequal forces."

\qquad

Finding the mean-Here you will use the $\mathcal{T A B L E}$ below to help you to find the ave rage strength of your Force specialist. The Force specialist should try to push with the same amount of force each time. ***Remember to push carefully and from the seat of the chair, not the back. Decide now which units you will use to measure the distance the chair travels from the tape line after being pushed.

Write down your $\mathcal{H Y P O} \mathcal{T H E S}$ IS here. What to you predict to fappen to the distance traveled as yougo from $\operatorname{Trial} \mathcal{N} u m b e r 1$ to $\operatorname{Trial} \mathcal{N} u m b e r 9$? We think that by the time he pushes for the $9^{\text {th }}$ time, the distance will be less than the first few pushes because the will be tired

Data Table 1

Pusf $\mathcal{N u m b e r}$	Distance Traveled in meters
1	1.2
2	1.5
3	1.5
4	1.7
5	1.8
6	1.7
7	1.5
8	1.5
9	1.4

To find the mean - add up the columns for distance traveled and divide by 9.
Show your work fere:
i
i
+
岕

The mean distance traveled is:

1.53 m

\mathcal{N} umbers will vary based on what type of surface you use.

Finding the median - to find the median, make a CHART listing the 10 measurements you took in order from smallest to largest. Thenfind the one in the middle. That is your median.

$$
1.2,1.3,1.4,1.5,1.5,1.5,1.5,1.7,1.7
$$

Median forDistance traveled is:
$\mathcal{N o w}$ pair up with anc they sit in the rolling lines used before. W other. (This makes t, group should measure on a scratch piece of object specialists should face one another as airs are lined up on one of the masking tape ct specialists should push away from each as we (l!) The measurement specialist from each py the chair from their group. Record this data vity 3 times, then share your data with one other paired up group. You will also need to find the mean of each paired up group.
4. In the space below, create a table that shows a comparison of your data with another groups. You must include the mean of your three trials. Labelthe table, "Data Table 2."

Create your table here. Don't forget to label it!

Data Table 2 (Distance between Chairs)

Irials	Our Data	Their Data
1	1.2 m	1.3 m
2	1.3 m	1.3 m
3	1.3 m	1.4 m
Mean	1.26 m	1.33 m

On a separate sheet of paper complete the following directions individually.
5. On the front, construct a chart that shows the forces involved when the chair moved. For example, one force is the force of friction between the chair and the floor. You would draw a picture of the chair and the floor and label it "Friction". Now you must illustrate at least 2 more forces.
6. On the back of the paper, copy Data table 1. Construct a graph that displays the data. On the bottom of the sheet, write at least 3 sentences explaining your fypothesis and if your data supports it.
*** \mathcal{T} fis would be an appropriate time to have a class discussion on "unequalforces."

Sample Student Pages

Page 1 - Chart of Forces

Friction

Gravity/Mass

Pus King

Page 2 -Table/Graph

Data	Table 2
Trial	Distance
1	1.2 m
2	1.5 m
3	1.5 m
4	1.7 m
5	1.8 m
6	1.5 m
7	1.5 m
8	1.5 m
9	1.4 m

Our hypothesis was that after the first fewpuskes, our Force Specialist would get tired and the distances would decrease. This happened after the $6^{\text {th }}$ push. Our pusher went from pushing 1.8 meters to 1.7. Each push after that decreased. So, our hypothesis is supported by our data.

