> WYV` Objbj .,O((((((($
i>2.
=======$?hBz>(>((
;#>mmmF(
(
=m=mm;0((p=
"
*c5"=$=9>0i>(=H}BWd}BHp=p=}B(=dm>>i>$>><4p"((((((Rational Code Cracking
Lesson Summary: In this lesson, the students will calculate the answers to rational expressions in order to crack a secret code. Answers are positive or negative rational numbers written either asfractions or as decimals. Expressions involve adding and subtracting positive and negative rational numbers and will be written on notecards, with the associated letter on the back, and placed at several stations in the classroom. The activity uses a rotation approach through the stations to get students active and interested.Subject:
Math: Numbers and Operations
Grade Level:
Target Grade: 7
Upper Bound: 8
Time Required: 1 Class + (45 minutes +)Authors: Graduate Fellow Name: Bruce Ngo Teacher Mentor Name: Mrs. StallingsDate Submitted: 1/2/06 Date Last Edited: 1/12/06Lesson Introduction / Motivation: Spies often use codes to communicate secret information. They are always on the move to keep from getting caught. Students will move from desk to desk, solving math problems to get clues to help decipher their secret message.Lesson Plan:
Make notecards with the mathematic expressions listed in the attached HYPERLINK "Rational%20Numbers.xls" Excel spreadsheet. There are 15 different letters associated with the expressions, which the students need to solve in order to match the letter to the value. Each notecard should have the expression written on the front, and the associated letter written on the back.
Designate enough stations for the notecards, having one notecard for each station.
There are four different versions of the worksheet attached, with four different secret messages. Tell the students that they must use the clues left by the mathematician spy in order to decode the secret message.
Students will have a limited amount of time at each station to solve the expression. Make sure the students at least write down the expression and the associated letter if they cannot solve the problem in time.
After the allotted time is up, the students must move on to the next station. With 15 stations and a 45 minute class, students can have roughly 2 minutes to solve the problem and 1 minute to rotate. You may need to adjust these times accordingly depending on how confident the students are with solving the problems and how well the students make the transition to the next station.
Students must make it through at least 15 stations to get all the associated letters. There are 23 expressions in the attached spreadsheet, allowing for repeated letters. Some of the messages can be solved without requiring all the letters.
Assessment:
Students should finish the expressions at home if they were not able to do so in class. The secret message should match the one in the spreadsheet for the associated worksheet.
Prerequisites for this Lesson:
Must be confident in addition and subtraction of rational numbers
Enough stations for the students, (they may be paired or grouped also)
Multimedia Support and Attachments:
HYPERLINK "Rational%20Numbers.xls" Excel spreadsheet with expressions and answers
HYPERLINK "RationalNumbersA.doc" Worksheet A
HYPERLINK "RationalNumbersB.doc" Worksheet B
HYPERLINK "RationalNumbersC.doc" Worksheet C
HYPERLINK "RationalNumbersD.doc" Worksheet D
Lesson Scaling:
The expressions can be altered in order to match the capability of the students. Time available for solving the problems could also be altered, if possible. Simpler messages with less letters would allow more time at the stations to solve the problems.
Please email us your comments on this lesson: E-mail to HYPERLINK "mailto:ljohnson@cvm.tamu.edu" ljohnson@cvm.tamu.eduPlease include the title of the lesson, whether you are a teacher, resident scientist or college faculty and what grade you used it for.
Teacher's Comments: Our students were not as confident in their skills in solving the expressions, so some of the students became frustrated during the activity. Students that were able to solve the problems looked forward to moving to the next station. The students were not used to moving from station to station, but were able to do so more in a more orderly fashion after a few times. You may wish to allow more time for the problems and the rotation in the beginning and shorten the time periods as the students get more comfortable with the process. Some students guessed the message early and others copied the message, although their worksheets did not match. Time is an issue, as some students do not respond as well to the restriction, but tend to enjoy the active movement.
Keywords:
Rational numbers
Code
Stations
+-;S
3
5
=
E
[
\
h
j
x
y
,35VX<=>ŽŽŽzh~hj5h~he5\h~hMh~hehMhehb=hs hMhMhMh
hMha
heB*phhe5B*\phh"5B*\phh"jh0
Ujsh0
Ujh0
Uh"B*ph0?
\
j
z
K
G:;I
&Fdd[$\$gdeh^hgd%[z
&F
h^gd%[z
&F
h^gdA
&Fdd[$\$gde
&Fdd[$\$gdegdegdeO>J(
X
G9:;<GI_`컳컫xqi\jh0
B*Uphh0
B*phh~h0
h~he5\jh~heUh~heh~h%[zheB*phh%[zB*phh$U2B*phhb=B*phh B*phhAhA0J$jYhAhAB*UphjhAB*UphhAB*phhe5B*\ph#`"T#%0gdehdd[$\$^hgdb=
&F
dd[$\$gd0
&Fgd0
gd0
&Fdd[$\$gdegde !"#EFGRSTUwxyץwd$j)h0
h7B*Uph$jh0
h7B*Uphh0
B*ph$jh0
h7B*Uphh0
h0
B*ph$j=h0
h7B*Uphh0
heB*phh0
h0
0Jjh0
B*Uph$jh0
h7B*Uphh0
B*ph#9:dez{#$%.0@AEFNO칳잖Ӂzzzsh~hW3h~h~h~he5\jh~heUh7B*phh0
B*phjiheB*Uph
he0JjheB*UphjheB*Uphh~hehb=h~h7h~h0
heB*phhe5B*\ph0AFO
&Fdd[$\$gd~
&Fdd[$\$gde,1h/ =!"#$%sDdX
S A #"`bLHPd={DnLHPd={PNG
IHDRll}HJsRGB pHYsttfx'PLTE33333f3ff3fff̙̙f̙zZhIDATXÝkG
BF!.ƑQsi p0dRdPPMpXH+J]aڝۛ+eo~y͛*&%hɪ@-@4 T)%K?4r,0 *G1dnVW *3zNnavtmXo_L]Iԏ
jO-X=G6İ,!ibemjucY&PZ>v܃.$QWQe Ԍ,X;Y$0і'$D%@ݰU-RyP XB*$Ѐ:YH': AI29
w? 9#4K䛖+-k֭s#++'w9oBr'Gr=s 2G?ZԘ8_7w~Amj6`=@FZ1*r^,MW]3cOOş245_TEAEƓv3]~F2
&pVbnprB2f(.clf=ޒ=aG#| p]D,\UgY7F런2;ai\'8pAWaƈ^-`D1T|/ug>QtIqC]X*sLtmyĭ^t]uYasEGW94T+q7sk r.{։ٶֆMc(Ï!hU
ctC荡C*5iLOQʪMia
YIjnGLA?Lg*Ad1csga^[㔯sAa;?zd#&3w
GD;<ѹ}}82<#b˂>}:}lcOm
-6uay՝¹*:ȝ1喴?s%c`;VҠkοl;֜11`v܃.$QWQe Ԍ,X;Y$0і'$D%@ݰU-RyP XB*$Ѐ:YH': AI29
w? 9#4K䛖+-k֭s#++'w9oBr'Gr=s 2G?ZԘ8_7w~Amj6`=@FZ1*r^,MW]3cOOş245_TEAEƓv3]~F2
&pVbnprB2f(.clf=ޒ=aG#| p]D,\UgY7F런2;ai\'8pAWaƈ^-`D1T|/ug>QtIqC]X*sLtmyĭ^t]uYasEGW94T+q7sk r.{։ٶֆMc(Ï!hU
ctC荡C*5iLOQʪMia
YIjnGLA?Lg*Ad1csga^[㔯sAa;?zd#&3w
GD;<ѹ}}82<#b˂>}:}lcOm
-6uay՝¹*:ȝ1喴?s%c`;VҠkοl;֜11`v܃.$QWQe Ԍ,X;Y$0і'$D%@ݰU-RyP XB*$Ѐ:YH': AI29
w? 9#4K䛖+-k֭s#++'w9oBr'Gr=s 2G?ZԘ8_7w~Amj6`=@FZ1*r^,MW]3cOOş245_TEAEƓv3]~F2
&pVbnprB2f(.clf=ޒ=aG#| p]D,\UgY7F런2;ai\'8pAWaƈ^-`D1T|/ug>QtIqC]X*sLtmyĭ^t]uYasEGW94T+q7sk r.{։ٶֆMc(Ï!hU
ctC荡C*5iLOQʪMia
YIjnGLA?Lg*Ad1csga^[㔯sAa;?zd#&3w
GD;<ѹ}}82<#b˂>}:}lcOm
-6uay՝¹*:ȝ1喴?s%c`;VҠkοl;֜11`*phO, z z z
O?\jzKG :
;
I
`"T
#%0AFQ!!4! !!!!!!!!!!!!!!!!!!!!!H!H!H!H!H!!!!!!!!!!!!?\jzKG :
;
I
`"T
#%0AFQ0000 00 0 00
0
0
0
0
0
000 000 0 00 0 0 0 0 000
0
0000000 0 0 0?Qy0y0y0y0`>O0OO "FRTx9dzOXXXXXXX/X$b$LHPd={@0(
B
S ?OktPY_gQ
Q::?>K;
I
"%NQLSTWX\]_`ghjktvz{~
,3RWZ^_ghnostwx !GPQSy
FNQ5rEw$V8=3(XzL&n1& lg&2 ; JR%Y^*
c
^\V
?`_>CgV8=.(kN>wm~dsFr]Iy1z^`CJOJQJo(^`CJOJQJo(opp^p`CJOJQJo(@@^@`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(PP^P`CJOJQJo(^`CJOJQJo(hH^`CJOJQJo(hHopp^p`CJOJQJo(hH@@^@`CJOJQJo(hH^`CJOJQJo(hH^`CJOJQJo(hH^`CJOJQJo(hH^`CJOJQJo(hHPP^P`CJOJQJo(hH^`CJOJQJo(^`CJOJQJo(opp^p`CJOJQJo(@@^@`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(PP^P`CJOJQJo(^`CJOJQJo(^`CJOJQJo(opp^p`CJOJQJo(@@^@`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(PP^P`CJOJQJo(hh^h`CJo(hH.P^`PCJo(hH..^`CJo(hH...x^`xCJo(hH.... ^`CJo(hH
.....
X@^
`XCJo(hH......
^`CJo(hH.......
8x^`8CJo(hH........
`H^``CJo(hH.........h^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@@^@`OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hH^`CJOJQJo(^`CJOJQJo(opp^p`CJOJQJo(@@^@`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(PP^P`CJOJQJo(^`CJOJQJo(^`CJOJQJo(opp^p`CJOJQJo(@@^@`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(PP^P`CJOJQJo(^`CJOJQJo(^`CJOJQJo(opp^p`CJOJQJo(@@^@`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(PP^P`CJOJQJo(^`CJOJQJo(^`CJOJQJo(opp^p`CJOJQJo(@@^@`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(PP^P`CJOJQJo(^`CJOJQJo(^`CJOJQJo(opp^p`CJOJQJo(@@^@`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(PP^P`CJOJQJo(^`CJOJQJo(^`CJOJQJo(opp^p`CJOJQJo(@@^@`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(PP^P`CJOJQJo(^`CJOJQJo(^`CJOJQJo(opp^p`CJOJQJo(@@^@`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(PP^P`CJOJQJo(^`CJOJQJo(^`CJOJQJo(opp^p`CJOJQJo(@@^@`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(PP^P`CJOJQJo(^`CJOJQJo(^`CJOJQJo(opp^p`CJOJQJo(@@^@`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(PP^P`CJOJQJo(.(kn1g5?`_>wmYc
^3(Iy1zds&2w$; J JEs a
0
iB
$U2j5b=x~G%[zMeW3"A7~@"3O@@UnknownGz Times New Roman5Symbol3&z Arial?5 z Courier New;Wingdings"qh& ! !!>4FF
3QHP ?x~G2TAMU NSF GK-12 HOME W. R. Klemm Bruce NgoH
Oh+'0 $
DP
\hpxTAMU NSF GK-12 HOME W. R. KlemmNormal.dotBruce Ngo12Microsoft Office Word@A@ xb
@^2՜.+,D՜.+,Hhp
CVM-VAPH! FTAMU NSF GK-12 HOME Title 8@_PID_HLINKSA*|mailto:ljohnson@cvm.tamu.edu\RationalNumbersD.doc\RationalNumbersC.doc\
RationalNumbersB.doc\ RationalNumbersA.docRational Numbers.xlsRational Numbers.xls
!"#%&'()*+,-./0123456789:;<=>?@ABCDEGHIJKLMOPQRSTUXRoot Entry Fh}ZData
1Table$BWordDocument.,SummaryInformation(FDocumentSummaryInformation8NCompObjq
FMicrosoft Office Word Document
MSWordDocWord.Document.89q